BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

549 related articles for article (PubMed ID: 33127815)

  • 21. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unique glucose oxidation catalysis of Gluconobacter oxydans constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance.
    Zhou P; Yao R; Zhang H; Bao J
    Biotechnol Bioeng; 2019 Sep; 116(9):2191-2199. PubMed ID: 31081135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification of substrate specificity in single point mutants of Agrobacterium tumefaciens type II NADH dehydrogenase.
    Desplats C; Beyly A; Cuiné S; Bernard L; Cournac L; Peltier G
    FEBS Lett; 2007 Aug; 581(21):4017-22. PubMed ID: 17673203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans.
    Fricke PM; Link T; Gätgens J; Sonntag C; Otto M; Bott M; Polen T
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):9267-9282. PubMed ID: 32974745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron transfer ability from NADH to menaquinone and from NADPH to oxygen of type II NADH dehydrogenase of Corynebacterium glutamicum.
    Nantapong N; Otofuji A; Migita CT; Adachi O; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 2005 Jan; 69(1):149-59. PubMed ID: 15665480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revealing in vivo glucose utilization of Gluconobacter oxydans 621H Δmgdh strain by mutagenesis.
    Wei L; Zhu D; Zhou J; Zhang J; Zhu K; Du L; Hua Q
    Microbiol Res; 2014; 169(5-6):469-75. PubMed ID: 24035043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
    Herrmann U; Merfort M; Jeude M; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutational analysis of the pentose phosphate and Entner-Doudoroff pathways in Gluconobacter oxydans reveals improved growth of a Δedd Δeda mutant on mannitol.
    Richhardt J; Bringer S; Bott M
    Appl Environ Microbiol; 2012 Oct; 78(19):6975-86. PubMed ID: 22843527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effective improvement of the activity of membrane-bound alcohol dehydrogenase by overexpression of adhS in Gluconobacter oxydans.
    Zhang H; Shi L; Lin J; Sun M; Wei D
    Biotechnol Lett; 2016 Jul; 38(7):1131-8. PubMed ID: 27015861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyruvate dehydrogenase complex regulator (PdhR) gene deletion boosts glucose metabolism in Escherichia coli under oxygen-limited culture conditions.
    Maeda S; Shimizu K; Kihira C; Iwabu Y; Kato R; Sugimoto M; Fukiya S; Wada M; Yokota A
    J Biosci Bioeng; 2017 Apr; 123(4):437-443. PubMed ID: 28007420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans.
    Hölscher T; Schleyer U; Merfort M; Bringer-Meyer S; Görisch H; Sahm H
    J Mol Microbiol Biotechnol; 2009; 16(1-2):6-13. PubMed ID: 18957858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conversion of quinate to 3-dehydroshikimate by Ca-alginate-immobilized membrane of Gluconobacter oxydans IFO 3244 and subsequent asymmetric reduction of 3-dehydroshikimate to shikimate by immobilized cytoplasmic NADP-shikimate dehydrogenase.
    Adachi O; Ano Y; Shinagawa E; Yakushi T; Matsushita K
    Biosci Biotechnol Biochem; 2010; 74(12):2438-44. PubMed ID: 21150112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of NAD(P)H by blood components. Relevance to bioreductively activated prodrugs in a targeted enzyme therapy system.
    Friedlos F; Knox RJ
    Biochem Pharmacol; 1992 Aug; 44(4):631-5. PubMed ID: 1387314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and characterization of a novel NAD+ -dependent xylitol dehydrogenase from Gluconobacter oxydans CGMCC 1. 637.
    Lin Y; Xie Z; Zhang J; Bao W; Pan H; Li B
    Wei Sheng Wu Xue Bao; 2012 Jun; 52(6):726-35. PubMed ID: 22934353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans.
    Suzuki S; Sugiyama M; Mihara Y; Hashiguchi K; Yokozeki K
    Biosci Biotechnol Biochem; 2002 Dec; 66(12):2614-20. PubMed ID: 12596856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian tracking of nicotinamide cofactor levels in an immortalized suprachiasmatic nucleus cell line.
    Wise DD; Shear JB
    Neuroscience; 2004; 128(2):263-8. PubMed ID: 15350639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and properties of NAD(P)-independent polyol dehydrogenase complex from the plasma membrane of Gluconobacter oxydans.
    VanLare IJ; Claus GW
    Can J Microbiol; 2007 Apr; 53(4):504-8. PubMed ID: 17612605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modification and evolution of Gluconobacter oxydans for enhanced growth and biotransformation capabilities at low glucose concentration.
    Zhu K; Lu L; Wei L; Wei D; Imanaka T; Hua Q
    Mol Biotechnol; 2011 Sep; 49(1):56-64. PubMed ID: 21253895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.