BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 33127883)

  • 1. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients.
    Kong J; Lee H; Kim D; Han SK; Ha D; Shin K; Kim S
    Nat Commun; 2020 Oct; 11(1):5485. PubMed ID: 33127883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a novel experimental model for muscle-invasive bladder cancer using a dog bladder cancer organoid culture.
    Elbadawy M; Usui T; Mori T; Tsunedomi R; Hazama S; Nabeta R; Uchide T; Fukushima R; Yoshida T; Shibutani M; Tanaka T; Masuda S; Okada R; Ichikawa R; Omatsu T; Mizutani T; Katayama Y; Noguchi S; Iwai S; Nakagawa T; Shinohara Y; Kaneda M; Yamawaki H; Sasaki K
    Cancer Sci; 2019 Sep; 110(9):2806-2821. PubMed ID: 31254429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning identifies the role of SMAD6 in the prognosis and drug susceptibility in bladder cancer.
    Chen Z; Ou Y; Ye F; Li W; Jiang H; Liu S
    J Cancer Res Clin Oncol; 2024 May; 150(5):264. PubMed ID: 38767747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Oncofetal Glycosaminoglycan Modification Provides Therapeutic Access to Cisplatin-resistant Bladder Cancer.
    Seiler R; Oo HZ; Tortora D; Clausen TM; Wang CK; Kumar G; Pereira MA; Ørum-Madsen MS; Agerbæk MØ; Gustavsson T; Nordmaj MA; Rich JR; Lallous N; Fazli L; Lee SS; Douglas J; Todenhöfer T; Esfandnia S; Battsogt D; Babcook JS; Al-Nakouzi N; Crabb SJ; Moskalev I; Kiss B; Davicioni E; Thalmann GN; Rennie PS; Black PC; Salanti A; Daugaard M
    Eur Urol; 2017 Jul; 72(1):142-150. PubMed ID: 28408175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer.
    Lee SH; Hu W; Matulay JT; Silva MV; Owczarek TB; Kim K; Chua CW; Barlow LJ; Kandoth C; Williams AB; Bergren SK; Pietzak EJ; Anderson CB; Benson MC; Coleman JA; Taylor BS; Abate-Shen C; McKiernan JM; Al-Ahmadie H; Solit DB; Shen MM
    Cell; 2018 Apr; 173(2):515-528.e17. PubMed ID: 29625057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bladder cancer patient-derived xenograft displays aggressive growth dynamics in vivo and in organoid culture.
    Cai EY; Garcia J; Liu Y; Vakar-Lopez F; Arora S; Nguyen HM; Lakely B; Brown L; Wong A; Montgomery B; Lee JK; Corey E; Wright JL; Hsieh AC; Lam HM
    Sci Rep; 2021 Feb; 11(1):4609. PubMed ID: 33633154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SRT1720 inhibits the growth of bladder cancer in organoids and murine models through the SIRT1-HIF axis.
    Tan P; Wang M; Zhong A; Wang Y; Du J; Wang J; Qi L; Bi Z; Zhang P; Lin T; Zhang J; Yang L; Chen J; Han P; Gong Q; Liu Y; Chen C; Wei Q
    Oncogene; 2021 Oct; 40(42):6081-6092. PubMed ID: 34471236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Epigenomic Approach to Improving Response to Neoadjuvant Cisplatin Chemotherapy in Bladder Cancer.
    Xylinas E; Hassler MR; Zhuang D; Krzywinski M; Erdem Z; Robinson BD; Elemento O; Clozel T; Shariat SF
    Biomolecules; 2016 Sep; 6(3):. PubMed ID: 27598218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of 2.5D organoid culture model using 3D bladder cancer organoid culture.
    Abugomaa A; Elbadawy M; Yamanaka M; Goto Y; Hayashi K; Mori T; Uchide T; Azakami D; Fukushima R; Yoshida T; Shibutani M; Yamashita R; Kobayashi M; Yamawaki H; Shinohara Y; Kaneda M; Usui T; Sasaki K
    Sci Rep; 2020 Jun; 10(1):9393. PubMed ID: 32523078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant colorectal cancer.
    Wagner S; Vlachogiannis G; De Haven Brandon A; Valenti M; Box G; Jenkins L; Mancusi C; Self A; Manodoro F; Assiotis I; Robinson P; Chauhan R; Rust AG; Matthews N; Eason K; Khan K; Starling N; Cunningham D; Sadanandam A; Isacke CM; Kirkin V; Valeri N; Whittaker SR
    Oncogene; 2019 Mar; 38(10):1717-1733. PubMed ID: 30353166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic inactivation of DNA repair genes as promising prognostic and predictive biomarkers in urothelial bladder carcinoma patients.
    Mohanad M; Yousef HF; Bahnassy AA
    Mol Genet Genomics; 2022 Nov; 297(6):1671-1687. PubMed ID: 36076047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids.
    Becker L; Fischer F; Fleck JL; Harland N; Herkommer A; Stenzl A; Aicher WK; Schenke-Layland K; Marzi J
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive biomarkers for drug response in bladder cancer.
    Yoshida T; Kates M; Fujita K; Bivalacqua TJ; McConkey DJ
    Int J Urol; 2019 Nov; 26(11):1044-1053. PubMed ID: 31370109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A network-based predictive gene expression signature for recurrence risks in stage II colorectal cancer.
    Yang WJ; Wang HB; Wang WD; Bai PY; Lu HX; Sun CH; Liu ZS; Guan DK; Yang GW; Zhang GL
    Cancer Med; 2020 Jan; 9(1):179-193. PubMed ID: 31724326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted DNA and RNA Sequencing of Paired Urothelial and Squamous Bladder Cancers Reveals Discordant Genomic and Transcriptomic Events and Unique Therapeutic Implications.
    Hovelson DH; Udager AM; McDaniel AS; Grivas P; Palmbos P; Tamura S; Lazo de la Vega L; Palapattu G; Veeneman B; El-Sawy L; Sadis SE; Morgan TM; Montgomery JS; Weizer AZ; Day KC; Neamati N; Liebert M; Keller ET; Day ML; Mehra R; Tomlins SA
    Eur Urol; 2018 Dec; 74(6):741-753. PubMed ID: 30033047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorectal Cancer Cell Line Proteomes Are Representative of Primary Tumors and Predict Drug Sensitivity.
    Wang J; Mouradov D; Wang X; Jorissen RN; Chambers MC; Zimmerman LJ; Vasaikar S; Love CG; Li S; Lowes K; Leuchowius KJ; Jousset H; Weinstock J; Yau C; Mariadason J; Shi Z; Ban Y; Chen X; Coffey RJC; Slebos RJC; Burgess AW; Liebler DC; Zhang B; Sieber OM
    Gastroenterology; 2017 Oct; 153(4):1082-1095. PubMed ID: 28625833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-exome sequencing reveals potential mechanisms of drug resistance to FGFR3-TACC3 targeted therapy and subsequent drug selection: towards a personalized medicine.
    Tong Z; Yan C; Dong YA; Yao M; Zhang H; Liu L; Zheng Y; Zhao P; Wang Y; Fang W; Zhang F; Jiang W
    BMC Med Genomics; 2020 Sep; 13(1):138. PubMed ID: 32957974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-Derived Organoids of Cholangiocarcinoma.
    Maier CF; Zhu L; Nanduri LK; Kühn D; Kochall S; Thepkaysone ML; William D; Grützmann K; Klink B; Betge J; Weitz J; Rahbari NN; Reißfelder C; Schölch S
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of Using a Patient-Derived Tumor Organoid Culture Model to Predict the Response to Chemotherapy Regimens In Stage IV Colorectal Cancer: A Blinded Study.
    Wang T; Pan W; Zheng H; Zheng H; Wang Z; Li JJ; Deng C; Yan J
    Dis Colon Rectum; 2021 Jul; 64(7):833-850. PubMed ID: 33709991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.