These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33128150)
1. The combined effect of clethodim (herbicide) and nitrogen variation on allelopathic interactions between Microcystis aeruginosa and Raphidiopsis raciborskii. Brêda-Alves F; de Oliveira Fernandes V; Cordeiro-Araújo MK; Chia MA Environ Sci Pollut Res Int; 2021 Mar; 28(9):11528-11539. PubMed ID: 33128150 [TBL] [Abstract][Full Text] [Related]
2. Clethodim (herbicide) alters the growth and toxins content of Microcystis aeruginosa and Raphidiopsis raciborskii. Brêda-Alves F; Militão FP; de Alvarenga BF; Miranda PF; de Oliveira Fernandes V; Cordeiro-Araújo MK; Chia MA Chemosphere; 2020 Mar; 243():125318. PubMed ID: 31995862 [TBL] [Abstract][Full Text] [Related]
3. Intraspecific variability in response to phosphorus depleted conditions in the cyanobacteria Microcystis aeruginosa and Raphidiopsis raciborskii. Guedes IA; Pacheco ABF; Vilar MCP; Mello MM; Marinho MM; Lurling M; Azevedo SMFO Harmful Algae; 2019 Jun; 86():96-105. PubMed ID: 31358281 [TBL] [Abstract][Full Text] [Related]
4. Interspecific competition reveals Raphidiopsis raciborskii as a more successful invader than Microcystis aeruginosa. Jia N; Yang Y; Yu G; Wang Y; Qiu P; Li H; Li R Harmful Algae; 2020 Jul; 97():101858. PubMed ID: 32732052 [TBL] [Abstract][Full Text] [Related]
5. Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions. Chia MA; Cordeiro-Araújo MK; Lorenzi AS; Bittencourt-Oliveira MDC Ecotoxicol Environ Saf; 2017 Aug; 142():189-199. PubMed ID: 28411514 [TBL] [Abstract][Full Text] [Related]
6. Are laboratory growth rate experiments relevant to explaining bloom-forming cyanobacteria distributions at global scale? Xiao M; Hamilton DP; O'Brien KR; Adams MP; Willis A; Burford MA Harmful Algae; 2020 Feb; 92():101732. PubMed ID: 32113600 [TBL] [Abstract][Full Text] [Related]
7. Behavior of Cylindrospermopsis raciborskii during coagulation and sludge storage - higher potential risk of toxin release than Microcystis aeruginosa? Li H; Pei H; Xu H; Jin Y; Sun J J Hazard Mater; 2018 Apr; 347():307-316. PubMed ID: 29331810 [TBL] [Abstract][Full Text] [Related]
8. Interspecific competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa on different phosphorus substrates. Bai F; Shi J; Yang S; Yang Y; Wu Z Environ Sci Pollut Res Int; 2020 Dec; 27(34):42264-42275. PubMed ID: 32246417 [TBL] [Abstract][Full Text] [Related]
9. Saxitoxins from the freshwater cyanobacterium Raphidiopsis raciborskii can contaminate marine mussels. Ramos TK; Costa LDF; Yunes JS; Resgalla C; Barufi JB; Bastos EO; Horta PA; Rörig LR Harmful Algae; 2021 Mar; 103():102004. PubMed ID: 33980444 [TBL] [Abstract][Full Text] [Related]
10. Cylindrospermopsin- and Deoxycylindrospermopsin-Producing Ballot A; Swe T; Mjelde M; Cerasino L; Hostyeva V; Miles CO Toxins (Basel); 2020 Apr; 12(4):. PubMed ID: 32272622 [TBL] [Abstract][Full Text] [Related]
11. Life-history responses of Daphnia sinensis simultaneously exposed to Microcystis aeruginosa and Cylindrospermopsis raciborskii. Lei L; Huang H; Peng L; Yang Y; Xiao L; Han BP Ecotoxicology; 2020 Aug; 29(6):771-779. PubMed ID: 32385599 [TBL] [Abstract][Full Text] [Related]
12. Light and phosphate competition between Cylindrospermopsis raciborskii and Microcystis aeruginosa is strain dependent. Marinho MM; Souza MB; Lürling M Microb Ecol; 2013 Oct; 66(3):479-88. PubMed ID: 23636583 [TBL] [Abstract][Full Text] [Related]
13. Cyanotoxin occurrence and potentially toxin producing cyanobacteria in freshwaters of Greece: a multi-disciplinary approach. Gkelis S; Zaoutsos N Toxicon; 2014 Feb; 78():1-9. PubMed ID: 24275084 [TBL] [Abstract][Full Text] [Related]
14. Differences in cyanobacterial strain responses to light and temperature reflect species plasticity. Xiao M; Willis A; Burford MA Harmful Algae; 2017 Feb; 62():84-93. PubMed ID: 28118895 [TBL] [Abstract][Full Text] [Related]
15. Increasing Temperature Counteracts the Negative Effect of UV Radiation on Growth and Photosynthetic Efficiency of Microcystis aeruginosa and Raphidiopsis raciborskii. Noyma NP; Mesquita MCB; Roland F; Marinho MM; Huszar VLM; Lürling M Photochem Photobiol; 2021 Jul; 97(4):753-762. PubMed ID: 33394510 [TBL] [Abstract][Full Text] [Related]
17. Intra-population strain variation in phosphorus storage strategies of the freshwater cyanobacterium Raphidiopsis raciborskii. Xiao M; Hamilton DP; Chuang A; Burford MA FEMS Microbiol Ecol; 2020 Jun; 96(6):. PubMed ID: 32407469 [TBL] [Abstract][Full Text] [Related]
18. Unveiling the link between Raphidiopsis raciborskii blooms and saxitoxin levels: Evaluating water quality in tropical reservoirs, Brazil. Santos-Silva RDD; Severiano JDS; Chia MA; Queiroz TM; Cordeiro-Araújo MK; Barbosa JEL Environ Pollut; 2024 Mar; 344():123401. PubMed ID: 38244903 [TBL] [Abstract][Full Text] [Related]
19. Occurrence of toxin-producing cyanobacteria blooms in a Brazilian semiarid reservoir. Costa IA; Azevedo SM; Senna PA; Bernardo RR; Costa SM; Chellappa NT Braz J Biol; 2006 Feb; 66(1B):211-9. PubMed ID: 16710515 [TBL] [Abstract][Full Text] [Related]
20. Application of N-TiO Jin Y; Zhang S; Xu H; Ma C; Sun J; Li H; Pei H Environ Pollut; 2019 Feb; 245():642-650. PubMed ID: 30481678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]