These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33128627)

  • 1. Crystallinity of TiO
    Dias-Netipanyj MF; Sopchenski L; Gradowski T; Elifio-Esposito S; Popat KC; Soares P
    J Mater Sci Mater Med; 2020 Oct; 31(11):94. PubMed ID: 33128627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation.
    Dias-Netipanyj MF; Cowden K; Sopchenski L; Cogo SC; Elifio-Esposito S; Popat KC; Soares P
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109850. PubMed ID: 31349471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes.
    Yu WQ; Zhang YL; Jiang XQ; Zhang FQ
    Oral Dis; 2010 Oct; 16(7):624-30. PubMed ID: 20604877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Release and Osteoblast Differentiation.
    Hashemi A; Ezati M; Mohammadnejad J; Houshmand B; Faghihi S
    Int J Nanomedicine; 2020; 15():4471-4481. PubMed ID: 32606689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of calcium and phosphorus incorporation on the properties and bioactivity of TiO
    Soares P; Dias-Netipanyj MF; Elifio-Esposito S; Leszczak V; Popat K
    J Biomater Appl; 2018 Sep; 33(3):410-421. PubMed ID: 30223734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties.
    Lewandowska Ż; Piszczek P; Radtke A; Jędrzejewski T; Kozak W; Sadowska B
    J Mater Sci Mater Med; 2015 Apr; 26(4):163. PubMed ID: 25791457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of crystalline phase changes in titania (TiO
    Zhang L; Liao X; Fok A; Ning C; Ng P; Wang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():91-101. PubMed ID: 29025678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of TiO
    Lai M; Jin Z; Su Z
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():490-497. PubMed ID: 28183637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.
    Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J
    Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titania (TiO
    Bhattacharjee A; Pereira B; Soares P; Popat KC
    Nanoscale; 2024 Jul; 16(26):12510-12522. PubMed ID: 38874593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive surface-modified Ti with titania nanotube arrays to design endoprosthesis for maxillofacial surgery: structural formation, morphology, physical properties and osseointegration.
    Thaik N; Sangkert S; Meesane J; Kooptarnond K; Khangkhamano M
    Biomed Mater; 2020 Apr; 15(3):035018. PubMed ID: 32053809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spark anodization of titanium-zirconium alloy: surface characterization and bioactivity assessment.
    Sharma A; McQuillan AJ; Sharma LA; Waddell JN; Shibata Y; Duncan WJ
    J Mater Sci Mater Med; 2015 Aug; 26(8):221. PubMed ID: 26260697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of engineered titania nanotubular surfaces on bone cells.
    Popat KC; Leoni L; Grimes CA; Desai TA
    Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased
    Sun L; Xu J; Sun Z; Zheng F; Liu C; Wang C; Hu X; Xia L; Liu Z; Xia R
    Int J Nanomedicine; 2018; 13():6769-6777. PubMed ID: 30425488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of diameter-controlled Ti-TiO2 nanotubes on the adhesion of osteoblast and fibroblast].
    Li HC; Zhang YM; Sun HP
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 Feb; 47(2):122-6. PubMed ID: 22490253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The controlled naringin release from TiO
    Lai M; Jin Z; Yan M; Zhu J; Yan X; Xu K
    J Biomater Appl; 2018 Nov; 33(5):673-680. PubMed ID: 30388387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell response of anodized nanotubes on titanium and titanium alloys.
    Minagar S; Wang J; Berndt CC; Ivanova EP; Wen C
    J Biomed Mater Res A; 2013 Sep; 101(9):2726-39. PubMed ID: 23436766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tanfloc/heparin polyelectrolyte multilayers improve osteogenic differentiation of adipose-derived stem cells on titania nanotube surfaces.
    Sabino RM; Mondini G; Kipper MJ; Martins AF; Popat KC
    Carbohydr Polym; 2021 Jan; 251():117079. PubMed ID: 33142622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced interfacial adhesion and osseointegration of anodic TiO
    Hu N; Wu Y; Xie L; Yusuf SM; Gao N; Starink MJ; Tong L; Chu PK; Wang H
    Acta Biomater; 2020 Apr; 106():360-375. PubMed ID: 32058083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced osteogenic differentiation of osteoblasts on CaTiO
    Zhang Y; Wang K; Dong K; Cui N; Lu T; Han Y
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110773. PubMed ID: 31926789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.