These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 33128627)
21. [Fabrication of titanium dioxide nanotube array and effects of its osteoblast proliferation and alkaline phosphatase activity]. Yu WQ; Jiang XQ; Zhang YL; Zhang FQ Zhonghua Kou Qiang Yi Xue Za Zhi; 2009 Dec; 44(12):751-5. PubMed ID: 20193294 [TBL] [Abstract][Full Text] [Related]
22. Enhanced osteogenic differentiation of bone mesenchymal stem cells on magnesium-incorporated titania nanotube arrays. Yan Y; Wei Y; Yang R; Xia L; Zhao C; Gao B; Zhang X; Fu J; Wang Q; Xu N Colloids Surf B Biointerfaces; 2019 Jul; 179():309-316. PubMed ID: 30981066 [TBL] [Abstract][Full Text] [Related]
23. Alkalescent nanotube films on a titanium-based implant: A novel approach to enhance biocompatibility. Zhang Y; Dong C; Yang S; Wu J; Xiao K; Huang Y; Li X Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():464-471. PubMed ID: 28024610 [TBL] [Abstract][Full Text] [Related]
24. Titanium dioxide nanotube films: Preparation, characterization and electrochemical biosensitivity towards alkaline phosphatase. Roman I; Trusca RD; Soare ML; Fratila C; Krasicka-Cydzik E; Stan MS; Dinischiotu A Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():374-82. PubMed ID: 24582263 [TBL] [Abstract][Full Text] [Related]
25. Effect of Anodized TiO Qadir M; Lin J; Biesiekierski A; Li Y; Wen C ACS Appl Mater Interfaces; 2020 Feb; 12(5):6776-6787. PubMed ID: 31917541 [TBL] [Abstract][Full Text] [Related]
26. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering. Uhm SH; Song DH; Kwon JS; Lee SB; Han JG; Kim KN J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):592-603. PubMed ID: 24123999 [TBL] [Abstract][Full Text] [Related]
27. Investigation of the interfacial effects of small chemical-modified TiO2 nanotubes on 3T3 fibroblast responses. Lin SP; Huang SY; Chen SF; Vinzons LU; Ciou JY; Wong PJ ACS Appl Mater Interfaces; 2014 Aug; 6(15):12071-82. PubMed ID: 25012464 [TBL] [Abstract][Full Text] [Related]
28. Surface modification of titanium substrates for enhanced osteogenetic and antibacterial properties. Liu P; Hao Y; Zhao Y; Yuan Z; Ding Y; Cai K Colloids Surf B Biointerfaces; 2017 Dec; 160():110-116. PubMed ID: 28918187 [TBL] [Abstract][Full Text] [Related]
29. In-vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applications. Indira K; Mudali UK; Rajendran N J Biomater Appl; 2014 Jul; 29(1):113-29. PubMed ID: 24346137 [TBL] [Abstract][Full Text] [Related]
30. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays. Smith BS; Yoriya S; Johnson T; Popat KC Acta Biomater; 2011 Jun; 7(6):2686-96. PubMed ID: 21414425 [TBL] [Abstract][Full Text] [Related]
31. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma. Seo HY; Kwon JS; Choi YR; Kim KM; Choi EH; Kim KN PLoS One; 2014; 9(11):e113477. PubMed ID: 25420027 [TBL] [Abstract][Full Text] [Related]
32. Videography supported adhesion, and proliferation behavior of MG-63 osteoblastic cells on 2.5D titania nanotube matrices. Manurung RV; Fu PW; Chu YS; Lo CM; Chattopadhyay S J Biomed Mater Res A; 2016 Apr; 104(4):842-52. PubMed ID: 26650774 [TBL] [Abstract][Full Text] [Related]
33. Fabrication of hyaluronidase-responsive biocompatible multilayers on BMP2 loaded titanium nanotube for the bacterial infection prevention. Sutrisno L; Hu Y; Shen X; Li M; Luo Z; Dai L; Wang S; Zhong JL; Cai K Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():95-105. PubMed ID: 29752124 [TBL] [Abstract][Full Text] [Related]
34. Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells. Wu S; Zhang D; Bai J; Zheng H; Deng J; Gou Z; Gao C J Biomed Mater Res A; 2020 Nov; 108(11):2305-2318. PubMed ID: 32363805 [TBL] [Abstract][Full Text] [Related]
35. An Alternative to Annealing TiO2 Nanotubes for Morphology Preservation: Atmospheric Pressure Plasma Jet Treatment. Seo SH; Uhm SH; Kwon JS; Choi EH; Kim KM; Kim KN J Nanosci Nanotechnol; 2015 Mar; 15(3):2501-7. PubMed ID: 26413696 [TBL] [Abstract][Full Text] [Related]
36. Titanium nanostructures for biomedical applications. Kulkarni M; Mazare A; Gongadze E; Perutkova Š; Kralj-Iglič V; Milošev I; Schmuki P; A Iglič ; Mozetič M Nanotechnology; 2015 Feb; 26(6):062002. PubMed ID: 25611515 [TBL] [Abstract][Full Text] [Related]
37. Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure. Nune KC; Misra R; Gai X; Li SJ; Hao YL J Biomater Appl; 2018 Mar; 32(8):1032-1048. PubMed ID: 29249195 [TBL] [Abstract][Full Text] [Related]
38. RGD peptide immobilized on TiO2 nanotubes for increased bone marrow stromal cells adhesion and osteogenic gene expression. Cao X; Yu WQ; Qiu J; Zhao YF; Zhang YL; Zhang FQ J Mater Sci Mater Med; 2012 Feb; 23(2):527-36. PubMed ID: 22143905 [TBL] [Abstract][Full Text] [Related]
39. Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. Peng Z; Ni J; Zheng K; Shen Y; Wang X; He G; Jin S; Tang T Int J Nanomedicine; 2013; 8():3093-105. PubMed ID: 23983463 [TBL] [Abstract][Full Text] [Related]
40. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. Das K; Bose S; Bandyopadhyay A J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]