These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33128760)

  • 41. Fiber-based HIC capture loop for coupling of protein A and size exclusion chromatography in a two-dimensional separation of monoclonal antibodies.
    Wang L; Trang HK; Desai J; Dunn ZD; Richardson DD; Marcus RK
    Anal Chim Acta; 2020 Feb; 1098():190-200. PubMed ID: 31948583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.
    Kluters S; Wittkopp F; Jöhnck M; Frech C
    J Sep Sci; 2016 Feb; 39(4):663-75. PubMed ID: 26549715
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification and characterization of monoclonal antibody fragments cleaved at the complementarity determining region using orthogonal analytical methods.
    Li W; Yang B; Zhou D; Xu J; Li W; Suen WC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1048():121-129. PubMed ID: 28242491
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inactivation of viruses using novel protein A wash buffers.
    Bolton GR; Selvitelli KR; Iliescu I; Cecchini DJ
    Biotechnol Prog; 2015; 31(2):406-13. PubMed ID: 25482293
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploration of fiber-based cation exchange adsorbents for the removal of monoclonal antibody aggregates.
    Winderl J; Neumann E; Hubbuch J
    J Chromatogr A; 2021 Sep; 1654():462451. PubMed ID: 34399144
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling of dual gradient elution in ion exchange and mixed-mode chromatography.
    Lee YF; Schmidt M; Graalfs H; Hafner M; Frech C
    J Chromatogr A; 2015 Oct; 1417():64-72. PubMed ID: 26391873
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Purification process of recombinant monoclonal antibodies with mixed mode chromatography.
    Maria S; Joucla G; Garbay B; Dieryck W; Lomenech AM; Santarelli X; Cabanne C
    J Chromatogr A; 2015 May; 1393():57-64. PubMed ID: 25805720
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-size-based membrane chromatographic separation and analysis of monoclonal antibody aggregates.
    Wang L; Hale G; Ghosh R
    Anal Chem; 2006 Oct; 78(19):6863-7. PubMed ID: 17007507
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The distinctive separation attributes of mixed-mode resins and their application in monoclonal antibody downstream purification process.
    Chen J; Tetrault J; Zhang Y; Wasserman A; Conley G; Dileo M; Haimes E; Nixon AE; Ley A
    J Chromatogr A; 2010 Jan; 1217(2):216-24. PubMed ID: 19819462
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Continuous countercurrent tangential chromatography for mixed mode post-capture operations in monoclonal antibody purification.
    Dutta AK; Fedorenko D; Tan J; Costanzo JA; Kahn DS; Zydney AL; Shinkazh O
    J Chromatogr A; 2017 Aug; 1511():37-44. PubMed ID: 28697935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Choices of capture chromatography technology in antibody manufacturing processes.
    DiLeo M; Ley A; Nixon AE; Chen J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():136-148. PubMed ID: 29069629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large-scale monoclonal antibody purification by continuous chromatography, from process design to scale-up.
    Girard V; Hilbold NJ; Ng CK; Pegon L; Chahim W; Rousset F; Monchois V
    J Biotechnol; 2015 Nov; 213():65-73. PubMed ID: 25962790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of B. cereus cereulide toxin from monoclonal antibody bioprocess feed via two-step Protein A affinity and multimodal chromatography.
    Wetterhall M; Grönberg A; Grönlund S; Björkman T; Sandberg L; Musunuri S; Chaloupka K; Gammell P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Jun; 1118-1119():194-202. PubMed ID: 31059926
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process.
    Chen J; Tetrault J; Ley A
    J Chromatogr A; 2008 Jan; 1177(2):272-81. PubMed ID: 17709111
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Host cell protein impurities in chromatographic polishing steps for monoclonal antibody purification.
    Levy NE; Valente KN; Lee KH; Lenhoff AM
    Biotechnol Bioeng; 2016 Jun; 113(6):1260-72. PubMed ID: 26550778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two-stage chromatographic separation of aggregates for monoclonal antibody therapeutics.
    Kumar V; Rathore AS
    J Chromatogr A; 2014 Nov; 1368():155-62. PubMed ID: 25441350
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monoclonal antibody fragment removal mediated by mixed mode resins.
    O'Connor E; Aspelund M; Bartnik F; Berge M; Coughlin K; Kambarami M; Spencer D; Yan H; Wang W
    J Chromatogr A; 2017 May; 1499():65-77. PubMed ID: 28389094
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly selective Protein A resin allows for mild sodium chloride-mediated elution of antibodies.
    Scheffel J; Hober S
    J Chromatogr A; 2021 Jan; 1637():461843. PubMed ID: 33412291
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrophobic property of cation-exchange resins affects monoclonal antibody aggregation.
    Huang C; Wang Y; Xu X; Mills J; Jin W; Ghose S; Li ZJ
    J Chromatogr A; 2020 Nov; 1631():461573. PubMed ID: 33010710
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analytical characterization of host-cell-protein-rich aggregates in monoclonal antibody solutions.
    Herman CE; Min L; Choe LH; Maurer RW; Xu X; Ghose S; Lee KH; Lenhoff AM
    Biotechnol Prog; 2023; 39(4):e3343. PubMed ID: 37020359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.