These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 33128810)
1. Enhancing the fungicidal activity of amphotericin B via vacuole disruption by benzyl isothiocyanate, a cruciferous plant constituent. Yamada N; Murata W; Yamaguchi Y; Fujita KI; Ogita A; Tanaka T Lett Appl Microbiol; 2021 Apr; 72(4):390-398. PubMed ID: 33128810 [TBL] [Abstract][Full Text] [Related]
2. Dependence of vacuole disruption and independence of potassium ion efflux in fungicidal activity induced by combination of amphotericin B and allicin against Saccharomyces cerevisiae. Ogita A; Yutani M; Fujita K; Tanaka T J Antibiot (Tokyo); 2010 Dec; 63(12):689-92. PubMed ID: 20940723 [TBL] [Abstract][Full Text] [Related]
3. Enhancement effect of N-methyl-N″-dodecylguanidine on the vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans. Yutani M; Ogita A; Usuki Y; Fujita K; Tanaka T J Antibiot (Tokyo); 2011 Jul; 64(7):469-74. PubMed ID: 21522157 [TBL] [Abstract][Full Text] [Related]
4. The vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans and its enhancement by allicin. Borjihan H; Ogita A; Fujita K; Hirasawa E; Tanaka T J Antibiot (Tokyo); 2009 Dec; 62(12):691-7. PubMed ID: 19876074 [TBL] [Abstract][Full Text] [Related]
5. Visualization analysis of the vacuole-targeting fungicidal activity of amphotericin B against the parent strain and an ergosterol-less mutant of Saccharomyces cerevisiae. Kang CK; Yamada K; Usuki Y; Ogita A; Fujita KI; Tanaka T Microbiology (Reading); 2013 May; 159(Pt 5):939-947. PubMed ID: 23475946 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of the fungicidal activity of amphotericin B by allicin, an allyl-sulfur compound from garlic, against the yeast Saccharomyces cerevisiae as a model system. Ogita A; Fujita K; Taniguchi M; Tanaka T Planta Med; 2006 Oct; 72(13):1247-50. PubMed ID: 16902870 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of the fungicidal activity of amphotericin B by allicin: effects on intracellular ergosterol trafficking. Ogita A; Fujita K; Tanaka T Planta Med; 2009 Feb; 75(3):222-6. PubMed ID: 19053016 [TBL] [Abstract][Full Text] [Related]
8. Synergistic fungicidal activities of amphotericin B and N-methyl-N"-dodecylguanidine: a constituent of polyol macrolide antibiotic niphimycin. Ogita A; Matsumoto K; Fujita K; Usuki Y; Hatanaka Y; Tanaka T J Antibiot (Tokyo); 2007 Jan; 60(1):27-35. PubMed ID: 17390586 [TBL] [Abstract][Full Text] [Related]
9. Enhancing effects on vacuole-targeting fungicidal activity of amphotericin B. Ogita A; Fujita K; Tanaka T Front Microbiol; 2012; 3():100. PubMed ID: 22457662 [TBL] [Abstract][Full Text] [Related]
10. Targeted yeast vacuole disruption by polyene antibiotics with a macrocyclic lactone ring. Ogita A; Fujita K; Usuki Y; Tanaka T Int J Antimicrob Agents; 2010 Jan; 35(1):89-92. PubMed ID: 19910165 [TBL] [Abstract][Full Text] [Related]
11. Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans. An M; Shen H; Cao Y; Zhang J; Cai Y; Wang R; Jiang Y Int J Antimicrob Agents; 2009 Mar; 33(3):258-63. PubMed ID: 19095412 [TBL] [Abstract][Full Text] [Related]
12. Rimonabant potentiates the antifungal activity of amphotericin B by increasing cellular oxidative stress and cell membrane permeability. Zhang M; Lu J; Duan X; Chen J; Jin X; Lin Z; Pang Y; Wang X; Lou H; Chang W FEMS Yeast Res; 2021 Apr; 21(3):. PubMed ID: 33705544 [TBL] [Abstract][Full Text] [Related]
13. Mode of action and synergistic effect of valinomycin and cereulide with amphotericin B against Candida albicans and Cryptococcus albidus. Makarasen A; Reukngam N; Khlaychan P; Chuysinuan P; Isobe M; Techasakul S J Mycol Med; 2018 Mar; 28(1):112-121. PubMed ID: 29276078 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence studies on the molecular action of amphotericin B on susceptible and resistant fungal cells. Haynes MP; Chong PL; Buckley HR; Pieringer RA Biochemistry; 1996 Jun; 35(24):7983-92. PubMed ID: 8672502 [TBL] [Abstract][Full Text] [Related]
15. Amphotericin B-copper(II) complex as a potential agent with higher antifungal activity against Candida albicans. Chudzik B; Tracz IB; Czernel G; Fiołka MJ; Borsuk G; Gagoś M Eur J Pharm Sci; 2013 Aug; 49(5):850-7. PubMed ID: 23791641 [TBL] [Abstract][Full Text] [Related]
16. The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Mesa-Arango AC; Trevijano-Contador N; Román E; Sánchez-Fresneda R; Casas C; Herrero E; Argüelles JC; Pla J; Cuenca-Estrella M; Zaragoza O Antimicrob Agents Chemother; 2014 Nov; 58(11):6627-38. PubMed ID: 25155595 [TBL] [Abstract][Full Text] [Related]
17. A new look at the antibiotic amphotericin B effect on Candida albicans plasma membrane permeability and cell viability functions. Chudzik B; Koselski M; Czuryło A; Trębacz K; Gagoś M Eur Biophys J; 2015 Feb; 44(1-2):77-90. PubMed ID: 25557523 [TBL] [Abstract][Full Text] [Related]
18. Emerging Role of Sphingolipids in Amphotericin B Drug Resistance. Madaan K; Bari VK Microb Drug Resist; 2023 Aug; 29(8):319-332. PubMed ID: 37327022 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of Kalra S; Tanwar S; Bari VK Microb Drug Resist; 2024 Jul; 30(7):279-287. PubMed ID: 38727600 [TBL] [Abstract][Full Text] [Related]