These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 33128916)

  • 1. Pulsed electron spin resonance of an organic microcrystal by dispersive readout.
    Keyser AKV; Burnett JJ; Kubatkin SE; Danilov AV; Oxborrow M; de Graaf SE; Lindström T
    J Magn Reson; 2020 Dec; 321():106853. PubMed ID: 33128916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconducting micro-resonators for electron spin resonance - the good, the bad, and the future.
    Artzi Y; Yishay Y; Fanciulli M; Jbara M; Blank A
    J Magn Reson; 2022 Jan; 334():107102. PubMed ID: 34847488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ amplification of spin echoes within a kinetic inductance parametric amplifier.
    Vine W; Savytskyi M; Vaartjes A; Kringhøj A; Parker D; Slack-Smith J; Schenkel T; Mølmer K; McCallum JC; Johnson BC; Morello A; Pla JJ
    Sci Adv; 2023 Mar; 9(10):eadg1593. PubMed ID: 36897947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Storing quantum information in spins and high-sensitivity ESR.
    Morton JJL; Bertet P
    J Magn Reson; 2018 Feb; 287():128-139. PubMed ID: 29413326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface loop-gap resonators for electron spin resonance at W-band.
    Twig Y; Sorkin A; Cristea D; Feintuch A; Blank A
    Rev Sci Instrum; 2017 Dec; 88(12):123901. PubMed ID: 29289191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed electron spin resonance spectroscopy in the Purcell regime.
    Ranjan V; Probst S; Albanese B; Doll A; Jacquot O; Flurin E; Heeres R; Vion D; Esteve D; Morton JJL; Bertet P
    J Magn Reson; 2020 Jan; 310():106662. PubMed ID: 31837553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-frequency electron spin resonance system using a microcantilever and a pulsed magnetic field.
    Ohmichi E; Mizuno N; Kimata M; Ohta H; Osada T
    Rev Sci Instrum; 2009 Jan; 80(1):013904. PubMed ID: 19191444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced surface resonators for electron spin resonance of single microcrystals.
    Dayan N; Ishay Y; Artzi Y; Cristea D; Reijerse E; Kuppusamy P; Blank A
    Rev Sci Instrum; 2018 Dec; 89(12):124707. PubMed ID: 30599630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy.
    Malissa H; Schuster DI; Tyryshkin AM; Houck AA; Lyon SA
    Rev Sci Instrum; 2013 Feb; 84(2):025116. PubMed ID: 23464260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Structure-Based Prediction of Electron Spin Decoherence in Organic Radicals.
    Canarie ER; Jahn SM; Stoll S
    J Phys Chem Lett; 2020 May; 11(9):3396-3400. PubMed ID: 32282218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaching the quantum limit of sensitivity in electron spin resonance.
    Bienfait A; Pla JJ; Kubo Y; Stern M; Zhou X; Lo CC; Weis CD; Schenkel T; Thewalt ML; Vion D; Esteve D; Julsgaard B; Mølmer K; Morton JJ; Bertet P
    Nat Nanotechnol; 2016 Mar; 11(3):253-7. PubMed ID: 26657787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron Spin Resonance at the Level of 10^{4} Spins Using Low Impedance Superconducting Resonators.
    Eichler C; Sigillito AJ; Lyon SA; Petta JR
    Phys Rev Lett; 2017 Jan; 118(3):037701. PubMed ID: 28157376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single spin optically detected magnetic resonance with 60-90 GHz (E-band) microwave resonators.
    Aslam N; Pfender M; Stöhr R; Neumann P; Scheffler M; Sumiya H; Abe H; Onoda S; Ohshima T; Isoya J; Wrachtrup J
    Rev Sci Instrum; 2015 Jun; 86(6):064704. PubMed ID: 26133855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-Spin-Resonance Dipstick.
    Zgadzai O; Twig Y; Wolfson H; Ahmad R; Kuppusamy P; Blank A
    Anal Chem; 2018 Jul; 90(13):7830-7836. PubMed ID: 29856211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings.
    Beaudoin F; Lachance-Quirion D; Coish WA; Pioro-Ladrière M
    Nanotechnology; 2016 Nov; 27(46):464003. PubMed ID: 27749276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-Kelvin (100 mK) time resolved electron paramagnetic resonance spectroscopy for studies of quantum dynamics of low-dimensional spin systems at low frequencies and magnetic fields.
    Cebulka R; Del Barco E
    Rev Sci Instrum; 2019 Aug; 90(8):085106. PubMed ID: 31472653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instrument for in-situ orientation of superconducting thin-film resonators used for electron-spin resonance experiments.
    Mowry A; Chen Y; Kubasek J; Friedman JR
    Rev Sci Instrum; 2015 Jan; 86(1):014702. PubMed ID: 25638103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced quantum coherence in exchange coupled spins via singlet-triplet transitions.
    Bae Y; Yang K; Willke P; Choi T; Heinrich AJ; Lutz CP
    Sci Adv; 2018 Nov; 4(11):eaau4159. PubMed ID: 30430136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QUANTUM INFORMATION. Coherent coupling of a single spin to microwave cavity photons.
    Viennot JJ; Dartiailh MC; Cottet A; Kontos T
    Science; 2015 Jul; 349(6246):408-11. PubMed ID: 26206930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of probing a quantum-dot spin qubit with superconducting resonator photons.
    Zhu XY; Tu T; Guo AL; Zhou ZQ; Li CF; Guo GC
    Sci Rep; 2018 Oct; 8(1):15761. PubMed ID: 30361643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.