These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 33129031)
1. Phyco-remediation of swine wastewater as a sustainable model based on circular economy. López-Pacheco IY; Silva-Núñez A; García-Perez JS; Carrillo-Nieves D; Salinas-Salazar C; Castillo-Zacarías C; Afewerki S; Barceló D; Iqbal HNM; Parra-Saldívar R J Environ Manage; 2021 Jan; 278(Pt 2):111534. PubMed ID: 33129031 [TBL] [Abstract][Full Text] [Related]
2. Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy. Díaz V; Leyva-Díaz JC; Almécija MC; Poyatos JM; Del Mar Muñío M; Martín-Pascual J Bioresour Technol; 2022 Nov; 363():127968. PubMed ID: 36115507 [TBL] [Abstract][Full Text] [Related]
3. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production. López-Sánchez A; Silva-Gálvez AL; Aguilar-Juárez Ó; Senés-Guerrero C; Orozco-Nunnelly DA; Carrillo-Nieves D; Gradilla-Hernández MS J Environ Manage; 2022 Apr; 308():114612. PubMed ID: 35149401 [TBL] [Abstract][Full Text] [Related]
4. Advancement on mixed microalgal-bacterial cultivation systems for nitrogen and phosphorus recoveries from wastewater to promote sustainable bioeconomy. Janpum C; Pombubpa N; Monshupanee T; Incharoensakdi A; In-Na P J Biotechnol; 2022 Dec; 360():198-210. PubMed ID: 36414126 [TBL] [Abstract][Full Text] [Related]
5. An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production. Biswas T; Bhushan S; Prajapati SK; Ray Chaudhuri S J Environ Manage; 2021 May; 286():112196. PubMed ID: 33639423 [TBL] [Abstract][Full Text] [Related]
6. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Cheng HH; Narindri B; Chu H; Whang LM Bioresour Technol; 2020 May; 303():122861. PubMed ID: 32046939 [TBL] [Abstract][Full Text] [Related]
7. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Olguín EJ Biotechnol Adv; 2012; 30(5):1031-46. PubMed ID: 22609182 [TBL] [Abstract][Full Text] [Related]
8. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Nagarajan D; Lee DJ; Chen CY; Chang JS Bioresour Technol; 2020 Apr; 302():122817. PubMed ID: 32007309 [TBL] [Abstract][Full Text] [Related]
9. Phycoremediation and biomass production from high strong swine wastewater for biogas generation improvement: An integrated bioprocess. Dinnebier HCF; Matthiensen A; Michelon W; Tápparo DC; Fonseca TG; Favretto R; Steinmetz RLR; Treichel H; Antes FG; Kunz A Bioresour Technol; 2021 Jul; 332():125111. PubMed ID: 33887557 [TBL] [Abstract][Full Text] [Related]
11. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification. Xie D; Ji X; Zhou Y; Dai J; He Y; Sun H; Guo Z; Yang Y; Zheng X; Chen B Bioresour Technol; 2022 Apr; 349():126886. PubMed ID: 35217166 [TBL] [Abstract][Full Text] [Related]
12. Microalgae on distillery wastewater treatment for improved biodiesel production and cellulose nanofiber synthesis: A sustainable biorefinery approach. Vasistha S; Balakrishnan D; Manivannan A; Rai MP Chemosphere; 2023 Feb; 315():137666. PubMed ID: 36586450 [TBL] [Abstract][Full Text] [Related]
13. Combining biotechnology with circular bioeconomy: From poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen. Ferreira A; Marques P; Ribeiro B; Assemany P; de Mendonça HV; Barata A; Oliveira AC; Reis A; Pinheiro HM; Gouveia L Environ Res; 2018 Jul; 164():32-38. PubMed ID: 29475106 [TBL] [Abstract][Full Text] [Related]
14. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: A critical review. Zhang C; Li S; Ho SH Bioresour Technol; 2021 Dec; 342():126056. PubMed ID: 34601027 [TBL] [Abstract][Full Text] [Related]
15. Investigation of phyco-remediation of road salt run-off with marine microalgae Nannochloropsis gaditana. Devasya R; Bassi A Environ Technol; 2019 Feb; 40(5):553-563. PubMed ID: 29072117 [TBL] [Abstract][Full Text] [Related]
16. Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation. Chen Y; Sun LP; Liu ZH; Martin G; Sun Z Top Curr Chem (Cham); 2017 Nov; 375(6):89. PubMed ID: 29181595 [TBL] [Abstract][Full Text] [Related]
17. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. Zhou W; Wang Z; Xu J; Ma L J Biosci Bioeng; 2018 Nov; 126(5):644-648. PubMed ID: 29801764 [TBL] [Abstract][Full Text] [Related]
19. Microalgae as promising source for integrated wastewater treatment and biodiesel production. Fal S; Benhima R; El Mernissi N; Kasmi Y; Smouni A; El Arroussi H Int J Phytoremediation; 2022; 24(1):34-46. PubMed ID: 34000939 [TBL] [Abstract][Full Text] [Related]
20. Removal of Nitrogen, Phosphorus, Organic Matter, and Heavy Metals from Pig-Farming Wastewater Using a Microalgae-Bacteria Consortium. Sacristan de Alva M; Oceguera-Vargas I; Lamas-Cosío E; León-Aguirre K; Arcega-Cabrera F Bull Environ Contam Toxicol; 2024 Oct; 113(5):58. PubMed ID: 39427057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]