These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33129031)

  • 21. Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp.
    Prandini JM; da Silva ML; Mezzari MP; Pirolli M; Michelon W; Soares HM
    Bioresour Technol; 2016 Feb; 202():67-75. PubMed ID: 26700760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microalgae: A green eco-friendly agents for bioremediation of tannery wastewater with simultaneous production of value-added products.
    Devi A; Verma M; Saratale GD; Saratale RG; Ferreira LFR; Mulla SI; Bharagava RN
    Chemosphere; 2023 Sep; 336():139192. PubMed ID: 37353172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progress and challenges of contaminate removal from wastewater using microalgae biomass.
    Ahmed SF; Mofijur M; Parisa TA; Islam N; Kusumo F; Inayat A; Le VG; Badruddin IA; Khan TMY; Ong HC
    Chemosphere; 2022 Jan; 286(Pt 1):131656. PubMed ID: 34325255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced sustainable integration of CO
    Chen J; Dai L; Mataya D; Cobb K; Chen P; Ruan R
    Bioresour Technol; 2022 Dec; 366():128188. PubMed ID: 36309175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microalgae-assisted green bioremediation of food-processing wastewater: A sustainable approach toward a circular economy concept.
    Najar-Almanzor CE; Velasco-Iglesias KD; Nunez-Ramos R; Uribe-Velázquez T; Solis-Bañuelos M; Fuentes-Carrasco OJ; Chairez I; García-Cayuela T; Carrillo-Nieves D
    J Environ Manage; 2023 Nov; 345():118774. PubMed ID: 37619389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO
    Lu W; Asraful Alam M; Liu S; Xu J; Parra Saldivar R
    Sci Total Environ; 2020 May; 716():135247. PubMed ID: 31839294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microalgae-driven swine wastewater biotreatment: Nutrient recovery, key microbial community and current challenges.
    Li S; Qu W; Chang H; Li J; Ho SH
    J Hazard Mater; 2022 Oct; 440():129785. PubMed ID: 36007366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater.
    Kothari R; Prasad R; Kumar V; Singh DP
    Bioresour Technol; 2013 Sep; 144():499-503. PubMed ID: 23896442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microalgae Brewery Wastewater Treatment: Potentials, Benefits and the Challenges.
    Amenorfenyo DK; Huang X; Zhang Y; Zeng Q; Zhang N; Ren J; Huang Q
    Int J Environ Res Public Health; 2019 May; 16(11):. PubMed ID: 31151156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production.
    Guo Z; Liu Y; Guo H; Yan S; Mu J
    J Environ Sci (China); 2013 Dec; 25 Suppl 1():S85-8. PubMed ID: 25078847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microalgae biomass from swine wastewater and its conversion to bioenergy.
    Cheng DL; Ngo HH; Guo WS; Chang SW; Nguyen DD; Kumar SM
    Bioresour Technol; 2019 Mar; 275():109-122. PubMed ID: 30579101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review.
    Shahid A; Malik S; Zhu H; Xu J; Nawaz MZ; Nawaz S; Asraful Alam M; Mehmood MA
    Sci Total Environ; 2020 Feb; 704():135303. PubMed ID: 31818584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of Monoraphidium contortum for the tertiary treatment of dairy industry wastewater and biomass production with nitrogen supplementation.
    Choi N; Nunes IVO; Ohira GOM; Carvalho JCM; Matsudo MC
    Bioprocess Biosyst Eng; 2023 Feb; 46(2):265-271. PubMed ID: 36520280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Valorization of swine wastewater in a circular economy approach: Effects of hydraulic retention time on microalgae cultivation.
    Silveira CF; Assis LR; Oliveira APS; Calijuri ML
    Sci Total Environ; 2021 Oct; 789():147861. PubMed ID: 34049147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Cultivating an oleaginous microalgae with municipal wastewater].
    Lü S; Zhang W; Peng X; Chen X; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):445-52. PubMed ID: 21650026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives.
    Tawfik A; Ismail S; Elsayed M; Qyyum MA; Rehan M
    Chemosphere; 2022 Jun; 296():133812. PubMed ID: 35149012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current advances in biological swine wastewater treatment using microalgae-based processes.
    Nagarajan D; Kusmayadi A; Yen HW; Dong CD; Lee DJ; Chang JS
    Bioresour Technol; 2019 Oct; 289():121718. PubMed ID: 31296361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment.
    Su Y
    Sci Total Environ; 2021 Mar; 762():144590. PubMed ID: 33360454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microalgae cultivation for treating agricultural effluent and producing value-added products.
    Alavianghavanini A; Shayesteh H; Bahri PA; Vadiveloo A; Moheimani NR
    Sci Total Environ; 2024 Feb; 912():169369. PubMed ID: 38104821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of microalgal cultivation system for wastewater remediation and sustainable biomass production.
    Gupta PL; Lee SM; Choi HJ
    World J Microbiol Biotechnol; 2016 Aug; 32(8):139. PubMed ID: 27357407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.