These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33129061)

  • 81. Iron and zinc compounds in the muscle meats of beef, lamb, pork and chicken.
    Hazell T
    J Sci Food Agric; 1982 Oct; 33(10):1049-56. PubMed ID: 7176546
    [No Abstract]   [Full Text] [Related]  

  • 82. An effective deep learning fusion method for predicting the TVB-N and TVC contents of chicken breasts using dual hyperspectral imaging systems.
    Cai M; Li X; Liang J; Liao M; Han Y
    Food Chem; 2024 Oct; 456():139847. PubMed ID: 38925007
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Quantitative determination of total pigments in red meats using hyperspectral imaging and multivariate analysis.
    Xiong Z; Sun DW; Xie A; Pu H; Han Z; Luo M
    Food Chem; 2015 Jul; 178():339-45. PubMed ID: 25704721
    [TBL] [Abstract][Full Text] [Related]  

  • 84. NMR and the water-holding issue of pork.
    Bertram HC; Andersen HJ
    J Anim Breed Genet; 2007 Nov; 124 Suppl 1():35-42. PubMed ID: 17988249
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The detection of chicken meat in meat products by means of the anserine/carnosine ratio.
    Tinbergen BJ; Slump P
    Z Lebensm Unters Forsch; 1976; 161(1):7-11. PubMed ID: 973451
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Evaluation of E-beam irradiation and storage time in pork exudates using NMR metabolomics.
    García-García AB; Herrera A; Fernández-Valle ME; Cambero MI; Castejón D
    Food Res Int; 2019 Jun; 120():553-559. PubMed ID: 31000271
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis.
    Pu H; Sun DW; Ma J; Cheng JH
    Meat Sci; 2015 Jan; 99():81-8. PubMed ID: 25282703
    [TBL] [Abstract][Full Text] [Related]  

  • 88. [Study on modeling method of total viable count of fresh pork meat based on hyperspectral imaging system].
    Wang W; Peng YK; Zhang XL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):411-5. PubMed ID: 20384135
    [TBL] [Abstract][Full Text] [Related]  

  • 89. [Identification of meat marker peptides and detection of adulteration by liquid chromatography-tandem mass spectrometry].
    Gu S; Zhan L; Zhao C; Zheng J; Cai Y; Deng X
    Se Pu; 2018 Dec; 36(12):1269-1278. PubMed ID: 30574705
    [TBL] [Abstract][Full Text] [Related]  

  • 90. [Cholesterol in beef, pork, chicken and their products commercialized in Maringá, Paraná, Brazil].
    Rowe A; Bertoni SA; Pereira PL; Matsushita M; de Souza NE
    Arch Latinoam Nutr; 1997 Sep; 47(3):282-4. PubMed ID: 9673687
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging.
    Barbin DF; ElMasry G; Sun DW; Allen P
    Food Chem; 2013 Jun; 138(2-3):1162-71. PubMed ID: 23411227
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Simultaneous and accurate visual identification of chicken, duck and pork components with the molecular amplification integrated lateral flow strip.
    Qin P; Xu J; Yao L; Wu Q; Yan C; Lu J; Yao B; Liu G; Chen W
    Food Chem; 2021 Mar; 339():127891. PubMed ID: 32861930
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Quantifying and predicting meat and meat products quality attributes using electromagnetic waves: an overview.
    Damez JL; Clerjon S
    Meat Sci; 2013 Dec; 95(4):879-96. PubMed ID: 23688798
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Optical scattering with hyperspectral imaging to classify longissimus dorsi muscle based on beef tenderness using multivariate modeling.
    Cluff K; Naganathan GK; Subbiah J; Samal A; Calkins CR
    Meat Sci; 2013 Sep; 95(1):42-50. PubMed ID: 23648431
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Quantitative determination of mutton adulteration with single-copy nuclear genes by real-time PCR.
    Li T; Wang J; Wang Z; Qiao L; Liu R; Li S; Chen A
    Food Chem; 2021 May; 344():128622. PubMed ID: 33221099
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Feasibility of using hyperspectral imaging to predict moisture content of porcine meat during salting process.
    Liu D; Sun DW; Qu J; Zeng XA; Pu H; Ma J
    Food Chem; 2014; 152():197-204. PubMed ID: 24444926
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Preparation of drip samples from leg of lamb with extended shelf life for nuclear magnetic resonance metabolomics studies.
    Samuelsson LM; Olivecrona N; Cônsolo NNB; Reis MM; Reis MG; Edwards PJB
    Meat Sci; 2021 Feb; 172():108304. PubMed ID: 32927380
    [TBL] [Abstract][Full Text] [Related]  

  • 98. [The application of proteomic technologies for the analysis of muscle proteins of farm animals used in the meat industry (review)].
    Shishkin SS; Kovalev LI; Kovaleva MA; Ivanov AV; Eremina LS; Sadykhov ÉG
    Prikl Biokhim Mikrobiol; 2014; 50(5):453-65. PubMed ID: 25707102
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The Application of Molecular Spectroscopy in Combination with Chemometrics for Halal Authentication Analysis: A Review.
    Rohman A; Windarsih A
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708254
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology.
    Fan K; Zhang M
    Crit Rev Food Sci Nutr; 2019; 59(14):2202-2213. PubMed ID: 29451810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.