These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33129091)

  • 1. Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production.
    Foong SY; Chan YH; Cheah WY; Kamaludin NH; Tengku Ibrahim TNB; Sonne C; Peng W; Show PL; Lam SS
    Bioresour Technol; 2021 Jan; 320(Pt A):124299. PubMed ID: 33129091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development.
    Alaedini AH; Tourani HK; Saidi M
    J Environ Manage; 2023 Mar; 329():117077. PubMed ID: 36565498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gasification of refuse-derived fuel from municipal solid waste for energy production: a review.
    Yang Y; Liew RK; Tamothran AM; Foong SY; Yek PNY; Chia PW; Van Tran T; Peng W; Lam SS
    Environ Chem Lett; 2021; 19(3):2127-2140. PubMed ID: 33462541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of carbon dioxide and waste (Derived from the site of Eutrophication) into syngas using a catalytic thermo-chemical platform.
    Kim JH; Jung S; Kim JO; Jeon YJ; Kwon EE
    Bioresour Technol; 2021 Dec; 341():125858. PubMed ID: 34523588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on gasification and pyrolysis of waste plastics.
    Shah HH; Amin M; Iqbal A; Nadeem I; Kalin M; Soomar AM; Galal AM
    Front Chem; 2022; 10():960894. PubMed ID: 36819712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel strategy in biohydrogen energy production from COVID - 19 plastic waste: A critical review.
    Dharmaraj S; Ashokkumar V; Chew KW; Chia SR; Show PL; Ngamcharussrivichai C
    Int J Hydrogen Energy; 2022 Dec; 47(100):42051-42074. PubMed ID: 34776598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress on CO-rich syngas production via CO
    Chan YH; Syed Abdul Rahman SNF; Lahuri HM; Khalid A
    Environ Pollut; 2021 Jun; 278():116843. PubMed ID: 33711630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on the conversion of cassava wastes into value-added products towards a sustainable environment.
    Nizzy AM; Kannan S
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69223-69240. PubMed ID: 35962891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/gasification unit with catalyst based on clay minerals.
    Šuhaj P; Haydary J; Husár J; Steltenpohl P; Šupa I
    Waste Manag; 2019 Feb; 85():1-10. PubMed ID: 30803562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gasification biochar from horticultural waste: An exemplar of the circular economy in Singapore.
    Arora S; Jung J; Liu M; Li X; Goel A; Chen J; Song S; Anderson C; Chen D; Leong K; Lim SH; Fong SL; Ghosh S; Lin A; Kua HW; Tan HTW; Dai Y; Wang CH
    Sci Total Environ; 2021 Aug; 781():146573. PubMed ID: 33798876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses.
    Shahabuddin M; Krishna BB; Bhaskar T; Perkins G
    Bioresour Technol; 2020 Mar; 299():122557. PubMed ID: 31918971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the environmental impact of palm kernel shell through maximizing its production of hydrogen and syngas using advanced artificial intelligence.
    Rezk H; Nassef AM; Inayat A; Sayed ET; Shahbaz M; Olabi AG
    Sci Total Environ; 2019 Mar; 658():1150-1160. PubMed ID: 30677979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jet fuel and hydrogen produced from waste plastics catalytic pyrolysis with activated carbon and MgO.
    Huo E; Lei H; Liu C; Zhang Y; Xin L; Zhao Y; Qian M; Zhang Q; Lin X; Wang C; Mateo W; Villota EM; Ruan R
    Sci Total Environ; 2020 Jul; 727():138411. PubMed ID: 32334209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waste-to-Fuels: Pyrolysis of Low-Density Polyethylene Waste in the Presence of H-ZSM-11.
    Lee N; Joo J; Lin KA; Lee J
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33917256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels.
    Veses A; Sanahuja-Parejo O; Callén MS; Murillo R; García T
    Waste Manag; 2020 Jan; 101():171-179. PubMed ID: 31614284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle analysis of fuel production from fast pyrolysis of biomass.
    Han J; Elgowainy A; Dunn JB; Wang MQ
    Bioresour Technol; 2013 Apr; 133():421-8. PubMed ID: 23454388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The clean energy aspect of plastic waste - hydrogen gas production, CO
    Sudalaimuthu P; Sathyamurthy R
    Environ Sci Pollut Res Int; 2023 May; 30(25):66559-66584. PubMed ID: 37133666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen-Rich Syngas Production from Gasification and Pyrolysis of Solar Dried Sewage Sludge: Experimental and Modeling Investigations.
    Ben Hassen Trabelsi A; Ghrib A; Zaafouri K; Friaa A; Ouerghi A; Naoui S; Belayouni H
    Biomed Res Int; 2017; 2017():7831470. PubMed ID: 28856162
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.