BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33129255)

  • 1. Directional divergence of Ep300 duplicates in teleosts and its implications.
    Wang X; Yan J
    BMC Evol Biol; 2020 Oct; 20(1):140. PubMed ID: 33129255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, and expression analysis.
    Good-Avila SV; Yegorov S; Harron S; Bogerd J; Glen P; Ozon J; Wilson BC
    BMC Evol Biol; 2009 Dec; 9():293. PubMed ID: 20015397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid diversification of FoxP2 in teleosts through gene duplication in the teleost-specific whole genome duplication event.
    Song X; Wang Y; Tang Y
    PLoS One; 2013; 8(12):e83858. PubMed ID: 24349554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duplicated Myosin V Genes in Teleosts Show Evolutionary Rate Variations among the Motor and Cargo-Binding Domains.
    Nuckels RJ; Nice CC; GarcĂ­a DM
    Genome Biol Evol; 2019 Feb; 11(2):415-430. PubMed ID: 30496538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and genetic rescue of an ep300 knockdown model for Rubinstein Taybi Syndrome in zebrafish.
    Babu A; Kamaraj M; Basu M; Mukherjee D; Kapoor S; Ranjan S; Swamy MM; Kaypee S; Scaria V; Kundu TK; Sachidanandan C
    Biochim Biophys Acta Mol Basis Dis; 2018 Apr; 1864(4 Pt A):1203-1215. PubMed ID: 29409755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation and divergence of Bmp2a, Bmp2b, and Bmp4 expression patterns within and between dentitions of teleost fishes.
    Wise SB; Stock DW
    Evol Dev; 2006; 8(6):511-23. PubMed ID: 17073935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution after Whole-Genome Duplication: Teleost MicroRNAs.
    Desvignes T; Sydes J; Montfort J; Bobe J; Postlethwait JH
    Mol Biol Evol; 2021 Jul; 38(8):3308-3331. PubMed ID: 33871629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-genome duplication in teleost fishes and its evolutionary consequences.
    Glasauer SM; Neuhauss SC
    Mol Genet Genomics; 2014 Dec; 289(6):1045-60. PubMed ID: 25092473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The divergence of alternative splicing between ohnologs in teleost fishes.
    Wang Y; Guo B
    BMC Ecol Evol; 2021 May; 21(1):98. PubMed ID: 34034651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.
    Parmar MB; Wright JM
    Genome; 2013 Nov; 56(11):691-701. PubMed ID: 24299108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary history of c-myc in teleosts and characterization of the duplicated c-myca genes in goldfish embryos.
    Marandel L; Labbe C; Bobe J; Le Bail PY
    Mol Reprod Dev; 2012 Feb; 79(2):85-96. PubMed ID: 22213278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapidly evolving fish genomes and teleost diversity.
    Ravi V; Venkatesh B
    Curr Opin Genet Dev; 2008 Dec; 18(6):544-50. PubMed ID: 19095434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications.
    Lu J; Peatman E; Tang H; Lewis J; Liu Z
    BMC Genomics; 2012 Jun; 13():246. PubMed ID: 22702965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase.
    Lin CJ; Maugars G; Lafont AG; Jeng SR; Wu GC; Dufour S; Chang CF
    Gen Comp Endocrinol; 2020 May; 291():113395. PubMed ID: 31981691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the myosin heavy chain gene MYH14 and its intronic microRNA miR-499: muscle-specific miR-499 expression persists in the absence of the ancestral host gene.
    Bhuiyan SS; Kinoshita S; Wongwarangkana C; Asaduzzaman M; Asakawa S; Watabe S
    BMC Evol Biol; 2013 Jul; 13():142. PubMed ID: 24059862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of the Coexistence of Duplicated LH Receptors in Teleosts, and Their Origin in Ancestral Actinopterygians.
    Maugars G; Dufour S
    PLoS One; 2015; 10(8):e0135184. PubMed ID: 26271038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics provides evidence for an ancient genome duplication event in fish.
    Taylor JS; Van de Peer Y; Braasch I; Meyer A
    Philos Trans R Soc Lond B Biol Sci; 2001 Oct; 356(1414):1661-79. PubMed ID: 11604130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes.
    Rohmann KN; Deitcher DL; Bass AH
    Mol Biol Evol; 2009 Jul; 26(7):1509-21. PubMed ID: 19321796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of follistatin in teleosts revealed through phylogenetic, genomic and expression analyses.
    Macqueen DJ; Johnston IA
    Dev Genes Evol; 2008 Jan; 218(1):1-14. PubMed ID: 18074148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.