BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33129255)

  • 21. Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication.
    Davesne D; Friedman M; Schmitt AD; Fernandez V; Carnevale G; Ahlberg PE; Sanchez S; Benson RBJ
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complex Genes Are Preferentially Retained After Whole-Genome Duplication in Teleost Fish.
    Guo B
    J Mol Evol; 2017 Jun; 84(5-6):253-258. PubMed ID: 28492966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Paralogous vitamin D receptors in teleosts: transition of nuclear receptor function.
    Howarth DL; Law SH; Barnes B; Hall JM; Hinton DE; Moore L; Maglich JM; Moore JT; Kullman SW
    Endocrinology; 2008 May; 149(5):2411-22. PubMed ID: 18258682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event?
    Douard V; Brunet F; Boussau B; Ahrens-Fath I; Vlaeminck-Guillem V; Haendler B; Laudet V; Guiguen Y
    BMC Evol Biol; 2008 Dec; 8():336. PubMed ID: 19094205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I; Salzburger W; Meyer A
    Mol Biol Evol; 2006 Jun; 23(6):1192-202. PubMed ID: 16547150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Different phylogenomic approaches to resolve the evolutionary relationships among model fish species.
    Negrisolo E; Kuhl H; Forcato C; Vitulo N; Reinhardt R; Patarnello T; Bargelloni L
    Mol Biol Evol; 2010 Dec; 27(12):2757-74. PubMed ID: 20591844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expansion of the Ago gene family in the teleost clade.
    McFarlane L; Svingen T; Braasch I; Koopman P; Schartl M; Wilhelm D
    Dev Genes Evol; 2011 Jun; 221(2):95-104. PubMed ID: 21556854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Many genes in fish have species-specific asymmetric rates of molecular evolution.
    Steinke D; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2006 Feb; 7():20. PubMed ID: 16466575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic organization and transcription of the medaka and zebrafish cellular retinol-binding protein (rbp) genes.
    Parmar MB; Shams R; Wright JM
    Mar Genomics; 2013 Sep; 11():1-10. PubMed ID: 23632098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionary history and functional characterization of androgen receptor genes in jawed vertebrates.
    Ogino Y; Katoh H; Kuraku S; Yamada G
    Endocrinology; 2009 Dec; 150(12):5415-27. PubMed ID: 19819965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling.
    Inoue J; Sato Y; Sinclair R; Tsukamoto K; Nishida M
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14918-23. PubMed ID: 26578810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome duplication, subfunction partitioning, and lineage divergence: Sox9 in stickleback and zebrafish.
    Cresko WA; Yan YL; Baltrus DA; Amores A; Singer A; Rodríguez-Marí A; Postlethwait JH
    Dev Dyn; 2003 Nov; 228(3):480-9. PubMed ID: 14579386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fates of zebrafish Hox gene duplicates.
    Jozefowicz C; McClintock J; Prince V
    J Struct Funct Genomics; 2003; 3(1-4):185-94. PubMed ID: 12836697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zebrafish hox clusters and vertebrate genome evolution.
    Amores A; Force A; Yan YL; Joly L; Amemiya C; Fritz A; Ho RK; Langeland J; Prince V; Wang YL; Westerfield M; Ekker M; Postlethwait JH
    Science; 1998 Nov; 282(5394):1711-4. PubMed ID: 9831563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish.
    Hoegg S; Brinkmann H; Taylor JS; Meyer A
    J Mol Evol; 2004 Aug; 59(2):190-203. PubMed ID: 15486693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Consequences of hoxb1 duplication in teleost fish.
    Hurley IA; Scemama JL; Prince VE
    Evol Dev; 2007; 9(6):540-54. PubMed ID: 17976051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The lasting after-effects of an ancient polyploidy on the genomes of teleosts.
    Conant GC
    PLoS One; 2020; 15(4):e0231356. PubMed ID: 32298330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversification of Hox Gene Clusters in Osteoglossomorph Fish in Comparison to Other Teleosts and the Spotted Gar Outgroup.
    Martin KJ; Holland PWH
    J Exp Zool B Mol Dev Evol; 2017 Nov; 328(7):638-644. PubMed ID: 28229564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes.
    Sundström G; Larsson TA; Brenner S; Venkatesh B; Larhammar D
    Gen Comp Endocrinol; 2008 Feb; 155(3):705-16. PubMed ID: 17950734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.