These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33129266)

  • 21. Arabidopsis Mg-Protoporphyrin IX Methyltransferase Activity and Redox Regulation Depend on Conserved Cysteines.
    Richter AS; Wang P; Grimm B
    Plant Cell Physiol; 2016 Mar; 57(3):519-27. PubMed ID: 26759408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analyses of phylogeny, evolution, conserved sequences and genome-wide expression of the ICK/KRP family of plant CDK inhibitors.
    Torres Acosta JA; Fowke LC; Wang H
    Ann Bot; 2011 May; 107(7):1141-57. PubMed ID: 21385782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae.
    Albornos L; Martín I; Iglesias R; Jiménez T; Labrador E; Dopico B
    BMC Plant Biol; 2012 Nov; 12():207. PubMed ID: 23134664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PTM-Psi: A python package to facilitate the computational investigation of post-translational modification on protein structures and their impacts on dynamics and functions.
    Mejia-Rodriguez D; Kim H; Sadler N; Li X; Bohutskyi P; Valiev M; Qian WJ; Cheung MS
    Protein Sci; 2023 Dec; 32(12):e4822. PubMed ID: 37902126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cysteine thiol sulfinic acid in plant stress signaling.
    Huang J; De Veirman L; Van Breusegem F
    Plant Cell Environ; 2024 Aug; 47(8):2766-2779. PubMed ID: 38251793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogenetic analysis of putative genes involved in the tryptophan-dependent pathway of auxin biosynthesis in rice.
    Abu-Zaitoon YM
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2480-95. PubMed ID: 24398922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Posttranslational Protein Modifications in Plant Metabolism.
    Friso G; van Wijk KJ
    Plant Physiol; 2015 Nov; 169(3):1469-87. PubMed ID: 26338952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative analyses of ubiquitin-like ATG8 and cysteine protease ATG4 autophagy genes in the plant lineage and cross-kingdom processing of ATG8 by ATG4.
    Seo E; Woo J; Park E; Bertolani SJ; Siegel JB; Choi D; Dinesh-Kumar SP
    Autophagy; 2016 Nov; 12(11):2054-2068. PubMed ID: 27540766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emergence and expansion of TFIIB-like factors in the plant kingdom.
    Knutson BA
    Gene; 2013 Aug; 526(1):30-8. PubMed ID: 23608173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery and characterization of conserved binding of eIF4E 1 (CBE1), a eukaryotic translation initiation factor 4E-binding plant protein.
    Patrick RM; Lee JCH; Teetsel JRJ; Yang SH; Choy GS; Browning KS
    J Biol Chem; 2018 Nov; 293(44):17240-17247. PubMed ID: 30213859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Silico Prediction of Ligand-Binding Sites of Plant Receptor Kinases Using Conservation Mapping.
    Orr RJS; Aalen RB
    Methods Mol Biol; 2017; 1621():93-105. PubMed ID: 28567646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasticity in plastid redox networks: evolution of glutathione-dependent redox cascades and glutathionylation sites.
    Müller-Schüssele SJ; Bohle F; Rossi J; Trost P; Meyer AJ; Zaffagnini M
    BMC Plant Biol; 2021 Jul; 21(1):322. PubMed ID: 34225654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of ATDRG1, a member of a new class of GTP-binding proteins in plants.
    Etheridge N; Trusov Y; Verbelen JP; Botella JR
    Plant Mol Biol; 1999 Apr; 39(6):1113-26. PubMed ID: 10380799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting the oxidation state of cysteines by multiple sequence alignment.
    Fiser A; Simon I
    Bioinformatics; 2000 Mar; 16(3):251-6. PubMed ID: 10869018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.
    Gutsche N; Zachgo S
    PLoS One; 2016; 11(4):e0153810. PubMed ID: 27128442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana.
    Bonner ER; Cahoon RE; Knapke SM; Jez JM
    J Biol Chem; 2005 Nov; 280(46):38803-13. PubMed ID: 16166087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant redox proteomics.
    Navrot N; Finnie C; Svensson B; Hägglund P
    J Proteomics; 2011 Aug; 74(8):1450-62. PubMed ID: 21406256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BBX proteins in green plants: insights into their evolution, structure, feature and functional diversification.
    Crocco CD; Botto JF
    Gene; 2013 Nov; 531(1):44-52. PubMed ID: 23988504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling.
    Gookin TE; Kim J; Assmann SM
    Genome Biol; 2008; 9(7):R120. PubMed ID: 18671868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.