These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33129273)

  • 21. Application of MLST and pilus gene sequence comparisons to investigate the population structures of Actinomyces naeslundii and Actinomyces oris.
    Henssge U; Do T; Gilbert SC; Cox S; Clark D; Wickström C; Ligtenberg AJ; Radford DR; Beighton D
    PLoS One; 2011; 6(6):e21430. PubMed ID: 21738661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Actinomyces naeslundii displays variant fimP and fimA fimbrial subunit genes corresponding to different types of acidic proline-rich protein and beta-linked galactosamine binding specificity.
    Hallberg K; Holm C; Ohman U; Strömberg N
    Infect Immun; 1998 Sep; 66(9):4403-10. PubMed ID: 9712794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Streptococcus gordonii Challisin protease is required for sensing cell--cell contact with Actinomyces oris.
    Mohammed WK; Krasnogor N; Jakubovics NS
    FEMS Microbiol Ecol; 2018 May; 94(5):. PubMed ID: 29547886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular basis of bacterial adhesion in the oral cavity.
    Mergenhagen SE; Sandberg AL; Chassy BM; Brennan MJ; Yeung MK; Donkersloot JA; Cisar JO
    Rev Infect Dis; 1987; 9 Suppl 5():S467-74. PubMed ID: 2891180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material.
    Cavalcanti IM; Nobbs AH; Ricomini-Filho AP; Jenkinson HF; Del Bel Cury AA
    Pathog Dis; 2016 Apr; 74(3):. PubMed ID: 26755532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The pilin protein FimP from Actinomyces oris: crystal structure and sequence analyses.
    Persson K; Esberg A; Claesson R; Strömberg N
    PLoS One; 2012; 7(10):e48364. PubMed ID: 23118994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effects of oral streptococci on biofilm formation by cariogenic bacteria in dual species cultures].
    Tamura S
    Kokubyo Gakkai Zasshi; 2008 Mar; 75(1):38-48. PubMed ID: 18421950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New structural insights into the PI-2 pilus from Streptococcus oralis, an early dental plaque colonizer.
    Yadav RK; Krishnan V
    FEBS J; 2022 Oct; 289(20):6342-6366. PubMed ID: 35561142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adhesion of Streptococcus mitis and Actinomyces oris in co-culture to machined and anodized titanium surfaces as affected by atmosphere and pH.
    Caous JS; Lövenklev M; Fäldt J; Langton M
    BMC Oral Health; 2013 Jan; 13():4. PubMed ID: 23298213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular and genetic analyses of Actinomyces spp.
    Yeung MK
    Crit Rev Oral Biol Med; 1999; 10(2):120-38. PubMed ID: 10759417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with Actinomyces naeslundii.
    Egland PG; Dû LD; Kolenbrander PE
    Infect Immun; 2001 Dec; 69(12):7512-6. PubMed ID: 11705927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-throughput quantitative method for assessing coaggregation among oral bacterial species.
    Levin-Sparenberg E; Shin JM; Hastings EM; Freeland M; Segaloff H; Rickard AH; Foxman B
    Lett Appl Microbiol; 2016 Oct; 63(4):274-81. PubMed ID: 27455031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of the srtC1 transcription start site and catalytically essential residues required for Actinomyces oris T14V SrtC1 activity.
    Chen P; Leung KP
    FEMS Microbiol Lett; 2011 Sep; 322(2):115-22. PubMed ID: 21676012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic changes in the initial colonization of Actinomyces naeslundii and Streptococcus gordonii using a new animal model.
    Zhang X; Senpuku H
    Jpn J Infect Dis; 2013; 66(1):11-6. PubMed ID: 23429078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New cell surface protein involved in biofilm formation by Streptococcus parasanguinis.
    Liang X; Chen YY; Ruiz T; Wu H
    Infect Immun; 2011 Aug; 79(8):3239-48. PubMed ID: 21576336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-adhesion of oral microbial pairs under flow in the presence of saliva and lactose.
    Bos R; van der Mei HC; Busscher HJ
    J Dent Res; 1996 Feb; 75(2):809-15. PubMed ID: 8655779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Specific inhibitors of bacterial adhesion: observations from the study of gram-positive bacteria that initiate biofilm formation on the tooth surface.
    Cisar JO; Takahashi Y; Ruhl S; Donkersloot JA; Sandberg AL
    Adv Dent Res; 1997 Apr; 11(1):168-75. PubMed ID: 9524453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Actinomyces naeslundii in initial dental biofilm formation.
    Dige I; Raarup MK; Nyengaard JR; Kilian M; Nyvad B
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2116-2126. PubMed ID: 19406899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface.
    Kolenbrander PE; Andersen RN; Moore LV
    Appl Environ Microbiol; 1990 Dec; 56(12):3890-4. PubMed ID: 2082831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence analyses of fimbriae subunit FimA proteins on Actinomyces naeslundii genospecies 1 and 2 and Actinomyces odontolyticus with variant carbohydrate binding specificities.
    Drobni M; Hallberg K; Ohman U; Birve A; Persson K; Johansson I; Strömberg N
    BMC Microbiol; 2006 May; 6():43. PubMed ID: 16686953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.