BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33129342)

  • 1. A novel quantification platform for point-of-care testing of circulating MicroRNAs based on allosteric spherical nanoprobe.
    Tian H; Yuan C; Liu Y; Li Z; Xia K; Li M; Xie F; Chen Q; Chen M; Fu W; Zhang Y
    J Nanobiotechnology; 2020 Oct; 18(1):158. PubMed ID: 33129342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and sensitive detection of circulating miRNA in human serum by ligase-mediated amplification.
    Chan HN; Ho SL; He D; Li HW
    Talanta; 2020 Jan; 206():120217. PubMed ID: 31514897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21.
    Mahani M; Mousapour Z; Divsar F; Nomani A; Ju H
    Mikrochim Acta; 2019 Feb; 186(3):132. PubMed ID: 30707293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile luminescent resonance energy transfer (LRET)-based ratiometric upconversion nanoprobe for intracellular miRNA biosensing.
    Gong L; Liu S; Song Y; Xie S; Guo Z; Xu J; Xu L
    J Mater Chem B; 2020 Jul; 8(27):5952-5961. PubMed ID: 32667025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MoS
    Yu X; Hu L; Zhang F; Wang M; Xia Z; Wei W
    Mikrochim Acta; 2018 Mar; 185(4):239. PubMed ID: 29594715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of Serum MicroRNAs in the Auxiliary Diagnosis of Non-Small Cell Lung Cancer.
    Shi GL; Chen Y; Sun Y; Yin YJ; Song CX
    Clin Lab; 2017 Jan; 63(1):133-140. PubMed ID: 28164492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence hydrogel array based on interfacial cation exchange amplification for highly sensitive microRNA detection.
    Wu L; Wang Y; He R; Zhang Y; He Y; Wang C; Lu Z; Liu Y; Ju H
    Anal Chim Acta; 2019 Nov; 1080():206-214. PubMed ID: 31409471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating PDA microtube waveguide system with heterogeneous CHA amplification strategy towards superior sensitive detection of miRNA.
    He C; Wang M; Sun X; Zhu Y; Zhou X; Xiao S; Zhang Q; Liu F; Yu Y; Liang H; Zou G
    Biosens Bioelectron; 2019 Mar; 129():50-57. PubMed ID: 30682689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hairpin allosteric molecular beacons-based cascaded amplification for effective detection of lung cancer-associated microRNA.
    Zheng C; Hu X; Sun S; Zhu L; Wang N; Zhang J; Huang G; Wang Y; Huang X; Wang L; Shen Z
    Talanta; 2022 Jul; 244():123412. PubMed ID: 35405462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enzyme-free surface plasmon resonance imaging biosensing method for highly sensitive detection of microRNA based on catalytic hairpin assembly and spherical nucleic acid.
    Wei X; Liu D; Zhao M; Yang T; Fan Y; Chen W; Liu P; Li J; Ding S
    Anal Chim Acta; 2020 Apr; 1108():21-27. PubMed ID: 32222240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratiometric fluorescence sensor based on carbon dots as internal reference signal and T7 exonuclease-assisted signal amplification strategy for microRNA-21 detection.
    Wang Z; Xue Z; Hao X; Miao C; Zhang J; Zheng Y; Zheng Z; Lin X; Weng S
    Anal Chim Acta; 2020 Mar; 1103():212-219. PubMed ID: 32081186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-Catalyzed Self-Growing Spherical Nucleic Acid Enzyme (SNAzyme) as a Double Amplifier for Ultrasensitive Chemiluminescence MicroRNA Detection.
    Shi L; Sun Y; Mi L; Li T
    ACS Sens; 2019 Dec; 4(12):3219-3226. PubMed ID: 31763826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence Resonance Energy Transfer-Based DNA Tetrahedron Nanotweezer for Highly Reliable Detection of Tumor-Related mRNA in Living Cells.
    He L; Lu DQ; Liang H; Xie S; Luo C; Hu M; Xu L; Zhang X; Tan W
    ACS Nano; 2017 Apr; 11(4):4060-4066. PubMed ID: 28328200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids.
    Melnychuk N; Klymchenko AS
    J Am Chem Soc; 2018 Aug; 140(34):10856-10865. PubMed ID: 30067022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering.
    Ma D; Huang C; Zheng J; Tang J; Li J; Yang J; Yang R
    Biosens Bioelectron; 2018 Mar; 101():167-173. PubMed ID: 29073517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ratiometric fluorescent 3D DNA walker and catalyzed hairpin assembly for determination of microRNA.
    Li Q; Liang X; Mu X; Tan L; Lu J; Hu K; Zhao S; Tian J
    Mikrochim Acta; 2020 Jun; 187(6):365. PubMed ID: 32488542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple "signal off-on" fluorescence nanoplatform for the label-free quantification of exosome-derived microRNA-21 in lung cancer plasma.
    Wei J; He S; Mao Y; Wu L; Liu X; Effah CY; Guo H; Wu Y
    Mikrochim Acta; 2021 Oct; 188(11):397. PubMed ID: 34716495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Platform for the Direct Profiling of microRNAs in Biofluids.
    Detassis S; Grasso M; Tabraue-Chávez M; Marín-Romero A; López-Longarela B; Ilyine H; Ress C; Ceriani S; Erspan M; Maglione A; Díaz-Mochón JJ; Pernagallo S; Denti MA
    Anal Chem; 2019 May; 91(9):5874-5880. PubMed ID: 30994325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smartphone-assisted detection of nucleic acids by light-harvesting FRET-based nanoprobe.
    Severi C; Melnychuk N; Klymchenko AS
    Biosens Bioelectron; 2020 Nov; 168():112515. PubMed ID: 32862092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DNA tetrahedron nanoprobe-based fluorescence resonance energy transfer sensing platform for intracellular tumor-related miRNA detection.
    Gao J; Zhang H; Wang Z
    Analyst; 2020 May; 145(10):3535-3542. PubMed ID: 32314984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.