BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33129532)

  • 1. Effects of vegetation on bacterial communities, carbon and nitrogen in dryland soil surfaces: implications for shrub encroachment in the southwest Kalahari.
    Lan S; Thomas AD; Tooth S; Wu L; Elliott DR
    Sci Total Environ; 2021 Apr; 764():142847. PubMed ID: 33129532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil organic carbon in drylands: shrub encroachment and vegetation management effects dwarf those of livestock grazing.
    Throop HL; Archer SR; McClaran MP
    Ecol Appl; 2020 Oct; 30(7):e02150. PubMed ID: 32343858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material.
    Steven B; Gallegos-Graves LV; Belnap J; Kuske CR
    FEMS Microbiol Ecol; 2013 Oct; 86(1):101-13. PubMed ID: 23621290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance to biocrusts decreased cyanobacteria, N-fixer abundance, and grass leaf N but increased fungal abundance.
    Adelizzi R; O'Brien EA; Hoellrich M; Rudgers JA; Mann M; Fernandes VMC; Darrouzet-Nardi A; Stricker E
    Ecology; 2022 Apr; 103(4):e3656. PubMed ID: 35132623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of shrub introduction on soil properties and implications for dryland revegetation.
    Zhang C; Wang Y; Jia X; Shao M; An Z
    Sci Total Environ; 2020 Nov; 742():140498. PubMed ID: 32623167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecohydrological effects of biocrust type on restoration dynamics in drylands.
    Chen N; Liu X; Zheng K; Zhang C; Liu Y; Lu K; Jia R; Zhao C
    Sci Total Environ; 2019 Oct; 687():527-534. PubMed ID: 31212160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe.
    Roncero-Ramos B; Muñoz-Martín MÁ; Chamizo S; Fernández-Valbuena L; Mendoza D; Perona E; Cantón Y; Mateo P
    PeerJ; 2019; 7():e6169. PubMed ID: 30627491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial organisation of fungi in soil biocrusts of the Kalahari is related to bacterial community structure and may indicate ecological functions of fungi in drylands.
    Elliott DR; Thomas AD; Hoon SR; Sen R
    Front Microbiol; 2024; 15():1173637. PubMed ID: 38741739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanobacterial community composition and their functional shifts associated with biocrust succession in the Gurbantunggut Desert.
    Lan S; Thomas AD; Rakes JB; Garcia-Pichel F; Wu L; Hu C
    Environ Microbiol Rep; 2021 Dec; 13(6):884-898. PubMed ID: 34533274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large Blooms of
    Karaoz U; Couradeau E; da Rocha UN; Lim HC; Northen T; Garcia-Pichel F; Brodie EL
    mBio; 2018 Mar; 9(2):. PubMed ID: 29511079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do changes in grazing pressure and the degree of shrub encroachment alter the effects of individual shrubs on understorey plant communities and soil function?
    Soliveres S; Eldridge DJ
    Funct Ecol; 2014 Apr; 28(2):530-537. PubMed ID: 25914435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocrust cover and successional stages influence soil bacterial composition and diversity in semiarid ecosystems.
    Miralles I; Lázaro R; Sánchez-Marañón M; Soriano M; Ortega R
    Sci Total Environ; 2020 Mar; 709():134654. PubMed ID: 31905575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sandblasting promotes shrub encroachment in arid grasslands.
    Niu F; Pierce NA; Okin GS; Archer SR; Fischella MR; Nadoum S
    New Phytol; 2023 Dec; 240(5):1817-1829. PubMed ID: 37658674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland.
    Throop HL; Archer SR
    Ecol Appl; 2007 Sep; 17(6):1809-23. PubMed ID: 17913142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does phenology play a role in the feedbacks underlying shrub encroachment?
    Fan Y; Li XY; Huang H; Wu XC; Yu KL; Wei JQ; Zhang CC; Wang P; Hu X; D'Odorico P
    Sci Total Environ; 2019 Mar; 657():1064-1073. PubMed ID: 30677874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere.
    Couradeau E; Giraldo-Silva A; De Martini F; Garcia-Pichel F
    Microbiome; 2019 Apr; 7(1):55. PubMed ID: 30944036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the Production of Nursery-Based Biological Soil Crusts for Restoration of Arid Land Soils.
    Bethany J; Giraldo-Silva A; Nelson C; Barger NN; Garcia-Pichel F
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31152015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping biocrust distribution in China's drylands under changing climate.
    Qiu D; Bowker MA; Xiao B; Zhao Y; Zhou X; Li X
    Sci Total Environ; 2023 Dec; 905():167211. PubMed ID: 37730025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanobacterial and moss biocrusts shape soil nematode community in dryland mountain ecosystems with increasing aridity.
    Wang Y; Xiao B; Wang W; Saéz-Sandino T; Delgado-Baquerizo M
    Sci Total Environ; 2024 Jun; 931():172750. PubMed ID: 38677426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beneficial Cyanosphere Heterotrophs Accelerate Establishment of Cyanobacterial Biocrust.
    Nelson C; Garcia-Pichel F
    Appl Environ Microbiol; 2021 Sep; 87(20):e0123621. PubMed ID: 34379492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.