BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 33130161)

  • 1. Reaching to sounds in virtual reality: A multisensory-motor approach to promote adaptation to altered auditory cues.
    Valzolgher C; Verdelet G; Salemme R; Lombardi L; Gaveau V; Farné A; Pavani F
    Neuropsychologia; 2020 Dec; 149():107665. PubMed ID: 33130161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adapting to altered auditory cues: Generalization from manual reaching to head pointing.
    Valzolgher C; Todeschini M; Verdelet G; Gatel J; Salemme R; Gaveau V; Truy E; Farnè A; Pavani F
    PLoS One; 2022; 17(4):e0263509. PubMed ID: 35421095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial hearing training in virtual reality with simulated asymmetric hearing loss.
    Valzolgher C; Capra S; Sum K; Finos L; Pavani F; Picinali L
    Sci Rep; 2024 Jan; 14(1):2469. PubMed ID: 38291126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Hearing Difficulties in Reaching Space in Bilateral Cochlear Implant Children Improve With Head Movements.
    Coudert A; Gaveau V; Gatel J; Verdelet G; Salemme R; Farne A; Pavani F; Truy E
    Ear Hear; 2022; 43(1):192-205. PubMed ID: 34225320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Updating spatial hearing abilities through multisensory and motor cues.
    Valzolgher C; Campus C; Rabini G; Gori M; Pavani F
    Cognition; 2020 Nov; 204():104409. PubMed ID: 32717425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between egocentric and allocentric spatial coding of sounds revealed by a multisensory learning paradigm.
    Rabini G; Altobelli E; Pavani F
    Sci Rep; 2019 May; 9(1):7892. PubMed ID: 31133688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Head and Eye Movements Reveal Compensatory Strategies for Acute Binaural Deficits During Sound Localization.
    Alemu RZ; Papsin BC; Harrison RV; Blakeman A; Gordon KA
    Trends Hear; 2024; 28():23312165231217910. PubMed ID: 38297817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefits of active listening during 3D sound localization.
    Gaveau V; Coudert A; Salemme R; Koun E; Desoche C; Truy E; Farnè A; Pavani F
    Exp Brain Res; 2022 Nov; 240(11):2817-2833. PubMed ID: 36071210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Certain, but incorrect: on the relation between subjective certainty and accuracy in sound localisation.
    Rabini G; Lucin G; Pavani F
    Exp Brain Res; 2020 Mar; 238(3):727-739. PubMed ID: 32080750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training spatial hearing in unilateral cochlear implant users through reaching to sounds in virtual reality.
    Valzolgher C; Bouzaid S; Grenouillet S; Gatel J; Ratenet L; Murenu F; Verdelet G; Salemme R; Gaveau V; Coudert A; Hermann R; Truy E; Farnè A; Pavani F
    Eur Arch Otorhinolaryngol; 2023 Aug; 280(8):3661-3672. PubMed ID: 36905419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Adaptation in Azimuth and Elevation to Acute Monaural Spatial Hearing after Training with Visual Feedback.
    Zonooz B; Van Opstal AJ
    eNeuro; 2019; 6(6):. PubMed ID: 31601632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistence and generalization of adaptive changes in auditory localization behavior following unilateral conductive hearing loss.
    Sanchez Jimenez A; Willard KJ; Bajo VM; King AJ; Nodal FR
    Front Neurosci; 2023; 17():1067937. PubMed ID: 36816127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contralateral routing of signals disrupts monaural level and spectral cues to sound localisation on the horizontal plane.
    Pedley AJ; Kitterick PT
    Hear Res; 2017 Sep; 353():104-111. PubMed ID: 28666702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How plastic is spatial hearing?
    King AJ; Kacelnik O; Mrsic-Flogel TD; Schnupp JW; Parsons CH; Moore DR
    Audiol Neurootol; 2001; 6(4):182-6. PubMed ID: 11694724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and non-spatial multisensory cueing in unilateral cochlear implant users.
    Pavani F; Venturini M; Baruffaldi F; Artesini L; Bonfioli F; Frau GN; van Zoest W
    Hear Res; 2017 Feb; 344():24-37. PubMed ID: 27810286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-weighting of Sound Localization Cues by Audiovisual Training.
    Kumpik DP; Campbell C; Schnupp JWH; King AJ
    Front Neurosci; 2019; 13():1164. PubMed ID: 31802997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orienting Auditory Attention through Vision: the Impact of Monaural Listening.
    Turri S; Rizvi M; Rabini G; Melonio A; Gennari R; Pavani F
    Multisens Res; 2021 Aug; 35(1):1-28. PubMed ID: 34384046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Sound localization cues of binaural hearing].
    Paulus E
    Laryngorhinootologie; 2003 Apr; 82(4):240-8. PubMed ID: 12717598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monaural and binaural spectrum level cues in the ferret: acoustics and the neural representation of auditory space.
    Carlile S; King AJ
    J Neurophysiol; 1994 Feb; 71(2):785-801. PubMed ID: 8176440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaching to Sounds Improves Spatial Hearing in Bilateral Cochlear Implant Users.
    Valzolgher C; Gatel J; Bouzaid S; Grenouillet S; Todeschini M; Verdelet G; Salemme R; Gaveau V; Truy E; Farnè A; Pavani F
    Ear Hear; 2023 Jan-Feb 01; 44(1):189-198. PubMed ID: 35982520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.