These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33130398)

  • 1. A real time data driven algal bloom risk forecast system for mariculture management.
    Guo J; Dong Y; Lee JHW
    Mar Pollut Bull; 2020 Dec; 161(Pt B):111731. PubMed ID: 33130398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning based marine water quality prediction for coastal hydro-environment management.
    Deng T; Chau KW; Duan HF
    J Environ Manage; 2021 Apr; 284():112051. PubMed ID: 33515839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-cost edge AI-chip-based system for real-time algae species classification and HAB prediction.
    Yuan A; Wang B; Li J; Lee JHW
    Water Res; 2023 Apr; 233():119727. PubMed ID: 36801570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting fish kills and toxic blooms in an intensive mariculture site in the Philippines using a machine learning model.
    YƱiguez AT; Ottong ZJ
    Sci Total Environ; 2020 Mar; 707():136173. PubMed ID: 31972913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental management of marine fish culture in Hong Kong.
    Lee JH; Choi KW; Arega F
    Mar Pollut Bull; 2003; 47(1-6):202-10. PubMed ID: 12787621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on red tide short-time prediction using GRU network model based on multi-feature Factors--A case in Xiamen sea area.
    Xiao S; Jian-Feng L; Fang-Fang WAN; Xuan YU; Xiaoxiao S; Lu-Yao HAN; Guang-Hao WEI; Bing ZHENG; Akhir M; Muslim SM; Idris I
    Mar Environ Res; 2022 Dec; 182():105727. PubMed ID: 36334558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of management and monitoring of harmful algal blooms in the northern part of the Persian Gulf and Oman Sea (Hormuzgan Province).
    Mirza Esmaeili F; Mortazavi MS; Dehghan Banadaki AR
    Environ Monit Assess; 2019 Dec; 192(1):42. PubMed ID: 31834540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs).
    Cheng KH; Chan SN; Lee JHW
    Mar Pollut Bull; 2020 Mar; 152():110889. PubMed ID: 32479279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The extended Kalman filter for forecast of algal bloom dynamics.
    Mao JQ; Lee JH; Choi KW
    Water Res; 2009 Sep; 43(17):4214-24. PubMed ID: 19577268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fishing in greener waters: Understanding the impact of harmful algal blooms on Lake Erie anglers and the potential for adoption of a forecast model.
    Gill D; Rowe M; Joshi SJ
    J Environ Manage; 2018 Dec; 227():248-255. PubMed ID: 30199720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel single-parameter approach for forecasting algal blooms.
    Xiao X; He J; Huang H; Miller TR; Christakos G; Reichwaldt ES; Ghadouani A; Lin S; Xu X; Shi J
    Water Res; 2017 Jan; 108():222-231. PubMed ID: 27847147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harmful algal bloom forecast system for SW Ireland. Part II: Are operational oceanographic models useful in a HAB warning system.
    Cusack C; Dabrowski T; Lyons K; Berry A; Westbrook G; Salas R; Duffy C; Nolan G; Silke J
    Harmful Algae; 2016 Mar; 53():86-101. PubMed ID: 28073449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentially harmful microalgae and algal blooms in the Red Sea: Current knowledge and research needs.
    Mohamed ZA
    Mar Environ Res; 2018 Sep; 140():234-242. PubMed ID: 29970250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in algal bloom detection and prediction technology using machine learning.
    Park J; Patel K; Lee WH
    Sci Total Environ; 2024 Aug; 938():173546. PubMed ID: 38810749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significantly decreasing harmful algal blooms in China seas in the early 21st century.
    Zeng J; Yin B; Wang Y; Huai B
    Mar Pollut Bull; 2019 Feb; 139():270-274. PubMed ID: 30686428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction on daily spatial distribution of chlorophyll-a in coastal seas using a synthetic method of remote sensing, machine learning and numerical modeling.
    Li H; Li X; Song D; Nie J; Liang S
    Sci Total Environ; 2024 Feb; 910():168642. PubMed ID: 37992824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating temporal decomposition and data-driven approaches for predicting coastal harmful algal blooms.
    Yan Z; Alamdari N
    J Environ Manage; 2024 Jul; 364():121463. PubMed ID: 38878579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harmful algal bloom forecast system for SW Ireland. Part I: Description and validation of an operational forecasting model.
    Dabrowski T; Lyons K; Nolan G; Berry A; Cusack C; Silke J
    Harmful Algae; 2016 Mar; 53():64-76. PubMed ID: 28073446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: A national-scale characterization.
    Huang J; Zhang Y; Arhonditsis GB; Gao J; Chen Q; Peng J
    Water Res; 2020 Aug; 181():115902. PubMed ID: 32505885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the performance of machine learning models for early warning of harmful algal blooms using an adaptive synthetic sampling method.
    Kim JH; Shin JK; Lee H; Lee DH; Kang JH; Cho KH; Lee YG; Chon K; Baek SS; Park Y
    Water Res; 2021 Dec; 207():117821. PubMed ID: 34781184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.