These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33130413)

  • 1. Deriving risk maps from epidemiological models of vector borne diseases: State-of-the-art and suggestions for best practice.
    Cheng Y; Tjaden NB; Jaeschke A; Thomas SM; Beierkuhnlein C
    Epidemics; 2020 Dec; 33():100411. PubMed ID: 33130413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outdoor and indoor monitoring of livestock-associated Culicoides spp. to assess vector-free periods and disease risks.
    Brugger K; Köfer J; Rubel F
    BMC Vet Res; 2016 Jun; 12():88. PubMed ID: 27259473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a Semi-Automatic Early Warning System for Vector-Borne Diseases.
    Pergantas P; Papanikolaou NE; Malesios C; Tsatsaris A; Kondakis M; Perganta I; Tselentis Y; Demiris N
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33668472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical analysis of a mean-field vector-borne diseases model on complex networks: An edge based compartmental approach.
    Wang X; Yang J
    Chaos; 2020 Jan; 30(1):013103. PubMed ID: 32013474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative analysis of the 2007 and 2017 Italian chikungunya outbreaks and implication for public health response.
    Caputo B; Russo G; Manica M; Vairo F; Poletti P; Guzzetta G; Merler S; Scagnolari C; Solimini A
    PLoS Negl Trop Dis; 2020 Jun; 14(6):e0008159. PubMed ID: 32525957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increase in vector-borne disease reporting affecting humans and animals in Syria and neighboring countries after the onset of conflict: A ProMED analysis 2003-2018.
    Tarnas MC; Desai AN; Lassmann B; Abbara A
    Int J Infect Dis; 2021 Jan; 102():103-109. PubMed ID: 33002614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the temporal and spatial risk of bluetongue related to the incursion of infected vectors into Switzerland.
    Racloz V; Venter G; Griot C; Stärk KD
    BMC Vet Res; 2008 Oct; 4():42. PubMed ID: 18922155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of R0 from the initial phase of an outbreak of a vector-borne infection.
    Massad E; Coutinho FA; Burattini MN; Amaku M
    Trop Med Int Health; 2010 Jan; 15(1):120-6. PubMed ID: 19891761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the risk for Usutu virus circulation in Europe: comparison of environmental niche models and epidemiological models.
    Cheng Y; Tjaden NB; Jaeschke A; Lühken R; Ziegler U; Thomas SM; Beierkuhnlein C
    Int J Health Geogr; 2018 Oct; 17(1):35. PubMed ID: 30314528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ross-Macdonald models: Which one should we use?
    Simoy MI; Aparicio JP
    Acta Trop; 2020 Jul; 207():105452. PubMed ID: 32302688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents.
    Caldwell JM; LaBeaud AD; Lambin EF; Stewart-Ibarra AM; Ndenga BA; Mutuku FM; Krystosik AR; Ayala EB; Anyamba A; Borbor-Cordova MJ; Damoah R; Grossi-Soyster EN; Heras FH; Ngugi HN; Ryan SJ; Shah MM; Sippy R; Mordecai EA
    Nat Commun; 2021 Feb; 12(1):1233. PubMed ID: 33623008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-annual variability of the effects of intrinsic and extrinsic drivers affecting West Nile virus vector Culex pipiens population dynamics in northeastern Italy.
    Fornasiero D; Mazzucato M; Barbujani M; Montarsi F; Capelli G; Mulatti P
    Parasit Vectors; 2020 May; 13(1):271. PubMed ID: 32471479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximation methods for analyzing multiscale stochastic vector-borne epidemic models.
    Liu X; Mubayi A; Reinhold D; Zhu L
    Math Biosci; 2019 Mar; 309():42-65. PubMed ID: 30658089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vector-borne disease models with Lagrangian approach.
    Gao D; Cao L
    J Math Biol; 2024 Jan; 88(2):22. PubMed ID: 38294559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases.
    Sanabria Malagón C; Vargas Bernal E
    Bull Math Biol; 2019 Nov; 81(11):4470-4483. PubMed ID: 30535844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission.
    Towers S; Brauer F; Castillo-Chavez C; Falconar AKI; Mubayi A; Romero-Vivas CME
    Epidemics; 2016 Dec; 17():50-55. PubMed ID: 27846442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and Hopf Bifurcation of a Vector-Borne Disease Model with Saturated Infection Rate and Reinfection.
    Hu Z; Yin S; Wang H
    Comput Math Methods Med; 2019; 2019():1352698. PubMed ID: 31341509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: mathematical modelling in Saudi Arabia and South Korea.
    Choi S; Jung E; Choi BY; Hur YJ; Ki M
    J Hosp Infect; 2018 Jun; 99(2):162-168. PubMed ID: 28958834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities.
    Harvim P; Zhang H; Georgescu P; Zhang L
    Bull Math Biol; 2019 Nov; 81(11):4518-4563. PubMed ID: 31641984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population.
    Bacaër N
    Bull Math Biol; 2007 Apr; 69(3):1067-91. PubMed ID: 17265121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.