These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33130491)

  • 1. Electrosensory Impairment in the Atlantic Stingray, Hypanus sabinus, After Crude Oil Exposure.
    Cave EJ; Kajiura SM
    Zoology (Jena); 2020 Dec; 143():125844. PubMed ID: 33130491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Deepwater Horizon Crude Oil Water Accommodated Fraction on Olfactory Function in the Atlantic Stingray, Hypanus sabinus.
    Cave EJ; Kajiura SM
    Sci Rep; 2018 Oct; 8(1):15786. PubMed ID: 30361507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional consequences of structural differences in stingray sensory systems. Part II: electrosensory system.
    Jordan LK; Kajiura SM; Gordon MS
    J Exp Biol; 2009 Oct; 212(19):3044-50. PubMed ID: 19749096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroreception in the euryhaline stingray, Dasyatis sabina.
    McGowan DW; Kajiura SM
    J Exp Biol; 2009 May; 212(Pt 10):1544-52. PubMed ID: 19411548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury accumulation, speciation, and temporal trends in Atlantic Stingrays (Hypanus sabinus).
    Soulen BK; Adams DH; Roberts AP
    Ecotoxicology; 2019 Apr; 28(3):251-260. PubMed ID: 30761428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early-life exposure to weathered, unweathered and dispersed oil has persisting effects on ecologically relevant behaviors in sheepshead minnow.
    Philibert DA; Lyons DD; Tierney KB
    Ecotoxicol Environ Saf; 2020 Dec; 205():111289. PubMed ID: 32949839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral responses of batoid elasmobranchs to prey-simulating electric fields are correlated to peripheral sensory morphology and ecology.
    Bedore CN; Harris LL; Kajiura SM
    Zoology (Jena); 2014 Apr; 117(2):95-103. PubMed ID: 24290363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroethology and life history adaptations of the elasmobranch electric sense.
    Sisneros JA; Tricas TC
    J Physiol Paris; 2002; 96(5-6):379-89. PubMed ID: 14692486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity and response dynamics of elasmobranch electrosensory primary afferent neurons to near threshold fields.
    Tricas TC; New JG
    J Comp Physiol A; 1998 Jan; 182(1):89-101. PubMed ID: 9447716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogenetic changes in the response properties of the peripheral electrosensory system in the Atlantic stingray (Dasyatis sabina).
    Sisneros JA; Tricas TC
    Brain Behav Evol; 2002; 59(3):130-40. PubMed ID: 12119532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phototoxicity Assessments of Field Sites in Barataria Bay, Louisiana, USA, and Heavily Weathered Macondo Crude Oil: 4 Years after the Deepwater Horizon Oil Spill.
    Finch BE; Stubblefield WA
    Environ Toxicol Chem; 2019 Aug; 38(8):1811-1819. PubMed ID: 31070808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of Deepwater Horizon crude oil exposure on adult mahi-mahi (Coryphaena hippurus) swim performance.
    Stieglitz JD; Mager EM; Hoenig RH; Benetti DD; Grosell M
    Environ Toxicol Chem; 2016 Oct; 35(10):2613-2622. PubMed ID: 27018209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure to Deepwater Horizon weathered crude oil increases routine metabolic demand in chub mackerel, Scomber japonicus.
    Klinger DH; Dale JJ; Machado BE; Incardona JP; Farwell CJ; Block BA
    Mar Pollut Bull; 2015 Sep; 98(1-2):259-66. PubMed ID: 26210587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained impairment of respiratory function and swim performance following acute oil exposure in a coastal marine fish.
    Johansen JL; Esbaugh AJ
    Aquat Toxicol; 2017 Jun; 187():82-89. PubMed ID: 28395197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxic effects of orally ingested oil from the Deepwater Horizon spill on laughing gulls.
    Horak KE; Bursian SJ; Ellis CK; Dean KM; Link JE; Hanson-Dorr KC; Cunningham FL; Harr KE; Pritsos CA; Pritsos KL; Healy KA; Cacela D; Shriner SA
    Ecotoxicol Environ Saf; 2017 Dec; 146():83-90. PubMed ID: 28823381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the electrosensory morphology of a euryhaline and a marine stingray.
    Camilieri-Asch V; Kempster RM; Collin SP; Johnstone RW; Theiss SM
    Zoology (Jena); 2013 Oct; 116(5):270-6. PubMed ID: 23988133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Deepwater Horizon Oil Spill Coast Guard Cohort study.
    Rusiecki J; Alexander M; Schwartz EG; Wang L; Weems L; Barrett J; Christenbury K; Johndrow D; Funk RH; Engel LS
    Occup Environ Med; 2018 Mar; 75(3):165-175. PubMed ID: 28899964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunotoxic effects of in vitro exposure of dolphin lymphocytes to Louisiana sweet crude oil and Corexit™.
    White ND; Godard-Codding C; Webb SJ; Bossart GD; Fair PA
    J Appl Toxicol; 2017 Jun; 37(6):676-682. PubMed ID: 27866382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Louisiana sweet crude oil on a Pacific coral, Pocillopora damicornis.
    May LA; Burnett AR; Miller CV; Pisarski E; Webster LF; Moffitt ZJ; Pennington P; Wirth E; Baker G; Ricker R; Woodley CM
    Aquat Toxicol; 2020 May; 222():105454. PubMed ID: 32179335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to Crude Oil from the
    Schlenker LS; Welch MJ; Mager EM; Stieglitz JD; Benetti DD; Munday PL; Grosell M
    Environ Sci Technol; 2019 Dec; 53(23):14001-14009. PubMed ID: 31702903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.