These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3313058)

  • 1. Calculation of electrostatic potentials in an enzyme active site.
    Gilson MK; Honig BH
    Nature; 1987 Nov 5-11; 330(6143):84-6. PubMed ID: 3313058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of electrostatic effects of engineering of protein charges.
    Sternberg MJ; Hayes FR; Russell AJ; Thomas PG; Fersht AR
    Nature; 1987 Nov 5-11; 330(6143):86-8. PubMed ID: 3313059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic channeling of substrates between enzyme active sites: comparison of simulation and experiment.
    Elcock AH; Huber GA; McCammon JA
    Biochemistry; 1997 Dec; 36(51):16049-58. PubMed ID: 9405038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of charge-charge interactions in proteins.
    Gilson MK; Honig BH
    Proteins; 1988; 3(1):32-52. PubMed ID: 3287370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric fields in active sites: substrate switching from null to strong fields in thiol- and selenol-subtilisins.
    Dinakarpandian D; Shenoy BC; Hilvert D; McRee DE; McTigue M; Carey PR
    Biochemistry; 1999 May; 38(20):6659-67. PubMed ID: 10350485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved continuum electrostatic modelling in proteins, with comparison to experiment.
    Warwicker J
    J Mol Biol; 1994 Feb; 236(3):887-903. PubMed ID: 7906738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis.
    MacKerell AD; Sommer MS; Karplus M
    J Mol Biol; 1995 Apr; 247(4):774-807. PubMed ID: 7723031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel electrostatic approach to enzyme mechanisms: carbonic anhydrase as an example.
    Ressler N
    Physiol Chem Phys Med NMR; 1993; 25(1):27-40. PubMed ID: 8316583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods.
    Bate P; Warwicker J
    J Mol Biol; 2004 Jul; 340(2):263-76. PubMed ID: 15201051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active-site titration of serine proteases in organic solvents.
    Wangikar PP; Carmichael D; Clark DS; Dordick JS
    Biotechnol Bioeng; 1996 May; 50(3):329-35. PubMed ID: 18626960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of electrostatic interaction energies and protonation state populations in enzyme active sites.
    Søndergaard CR; McIntosh LP; Pollastri G; Nielsen JE
    J Mol Biol; 2008 Feb; 376(1):269-87. PubMed ID: 18155242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting structural and electrostatic interactions of charged groups in alpha-sarcin. An NMR study of some mutants involving the catalytic residues.
    García-Mayoral MF; Pérez-Cañadillas JM; Santoro J; Ibarra-Molero B; Sanchez-Ruiz JM; Lacadena J; Martínez del Pozo A; Gavilanes JG; Rico M; Bruix M
    Biochemistry; 2003 Nov; 42(45):13122-33. PubMed ID: 14609322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational chemistry study of 3D-structure-function relationships for enzymes based on Markov models for protein electrostatic, HINT, and van der Waals potentials.
    Concu R; Podda G; Uriarte E; González-Díaz H
    J Comput Chem; 2009 Jul; 30(9):1510-20. PubMed ID: 19086060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuum electrostatic model for the binding of cytochrome c2 to the photosynthetic reaction center from Rhodobacter sphaeroides.
    Miyashita O; Onuchic JN; Okamura MY
    Biochemistry; 2003 Oct; 42(40):11651-60. PubMed ID: 14529275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification.
    Klapper I; Hagstrom R; Fine R; Sharp K; Honig B
    Proteins; 1986 Sep; 1(1):47-59. PubMed ID: 3449851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new quantum method for electrostatic solvation energy of protein.
    Mei Y; Ji C; Zhang JZ
    J Chem Phys; 2006 Sep; 125(9):094906. PubMed ID: 16965118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures.
    Gong S; Blundell TL
    PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculations of electrostatic interactions and pKas in the active site of Escherichia coli thioredoxin.
    Dillet V; Dyson HJ; Bashford D
    Biochemistry; 1998 Jul; 37(28):10298-306. PubMed ID: 9665738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase.
    Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP
    Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.