These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 33131003)
1. Kinetic consequences of the endogenous ligand to molybdenum in the DMSO reductase family: a case study with periplasmic nitrate reductase. Mintmier B; McGarry JM; Bain DJ; Basu P J Biol Inorg Chem; 2021 Feb; 26(1):13-28. PubMed ID: 33131003 [TBL] [Abstract][Full Text] [Related]
3. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina. Simpson PJ; Codd R Biochem Biophys Res Commun; 2011 Nov; 414(4):783-8. PubMed ID: 22005463 [TBL] [Abstract][Full Text] [Related]
4. Access to the active site of periplasmic nitrate reductase: insights from site-directed mutagenesis and zinc inhibition studies. Dementin S; Arnoux P; Frangioni B; Grosse S; Léger C; Burlat B; Guigliarelli B; Sabaty M; Pignol D Biochemistry; 2007 Aug; 46(34):9713-21. PubMed ID: 17676770 [TBL] [Abstract][Full Text] [Related]
5. Major Mo(V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family. Fourmond V; Burlat B; Dementin S; Arnoux P; Sabaty M; Boiry S; Guigliarelli B; Bertrand P; Pignol D; Léger C J Phys Chem B; 2008 Dec; 112(48):15478-86. PubMed ID: 19006273 [TBL] [Abstract][Full Text] [Related]
7. The critical role of a conserved lysine residue in periplasmic nitrate reductase catalyzed reactions. Giri NC; Mintmier B; Radhakrishnan M; Mielke JW; Wilcoxen J; Basu P J Biol Inorg Chem; 2024 Jun; 29(4):395-405. PubMed ID: 38782786 [TBL] [Abstract][Full Text] [Related]
8. Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family. Bray RC; Adams B; Smith AT; Bennett B; Bailey S Biochemistry; 2000 Sep; 39(37):11258-69. PubMed ID: 10985771 [TBL] [Abstract][Full Text] [Related]
9. Reassessing the strategies for trapping catalytic intermediates during nitrate reductase turnover. Fourmond V; Sabaty M; Arnoux P; Bertrand P; Pignol D; Léger C J Phys Chem B; 2010 Mar; 114(9):3341-7. PubMed ID: 20163092 [TBL] [Abstract][Full Text] [Related]
10. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Butler CS; Charnock JM; Bennett B; Sears HJ; Reilly AJ; Ferguson SJ; Garner CD; Lowe DJ; Thomson AJ; Berks BC; Richardson DJ Biochemistry; 1999 Jul; 38(28):9000-12. PubMed ID: 10413473 [TBL] [Abstract][Full Text] [Related]
11. The crystal structure of Cupriavidus necator nitrate reductase in oxidized and partially reduced states. Coelho C; González PJ; Moura JG; Moura I; Trincão J; João Romão M J Mol Biol; 2011 May; 408(5):932-48. PubMed ID: 21419779 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of substrate inhibition of periplasmic nitrate reductase. Jacques JG; Burlat B; Arnoux P; Sabaty M; Guigliarelli B; Léger C; Pignol D; Fourmond V Biochim Biophys Acta; 2014 Oct; 1837(10):1801-9. PubMed ID: 24882638 [TBL] [Abstract][Full Text] [Related]
13. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities. Cerqueira NM; Gonzalez PJ; Fernandes PA; Moura JJ; Ramos MJ Acc Chem Res; 2015 Nov; 48(11):2875-84. PubMed ID: 26509703 [TBL] [Abstract][Full Text] [Related]
14. Site-directed mutagenesis of dimethyl sulfoxide reductase from Rhodobacter capsulatus: characterization of a Y114 --> F mutant. Ridge JP; Aguey-Zinsou KF; Bernhardt PV; Brereton IM; Hanson GR; McEwan AG Biochemistry; 2002 Dec; 41(52):15762-9. PubMed ID: 12501205 [TBL] [Abstract][Full Text] [Related]
15. Effects of slow substrate binding and release in redox enzymes: theory and application to periplasmic nitrate reductase. Bertrand P; Frangioni B; Dementin S; Sabaty M; Arnoux P; Guigliarelli B; Pignol D; Léger C J Phys Chem B; 2007 Aug; 111(34):10300-11. PubMed ID: 17676894 [TBL] [Abstract][Full Text] [Related]
16. Selectivity of thiolate ligand and preference of substrate in model reactions of dissimilatory nitrate reductase. Majumdar A; Pal K; Sarkar S Inorg Chem; 2008 Apr; 47(8):3393-401. PubMed ID: 18335980 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the active-site design of molybdenum oxo-transfer enzymes by quantum mechanical calculations. Li J; Ryde U Inorg Chem; 2014 Nov; 53(22):11913-24. PubMed ID: 25372012 [TBL] [Abstract][Full Text] [Related]
18. The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase. Cerqueira NM; Gonzalez PJ; Brondino CD; Romão MJ; Romão CC; Moura I; Moura JJ J Comput Chem; 2009 Nov; 30(15):2466-84. PubMed ID: 19360810 [TBL] [Abstract][Full Text] [Related]
19. An active site tyrosine influences the ability of the dimethyl sulfoxide reductase family of molybdopterin enzymes to reduce S-oxides. Johnson KE; Rajagopalan KV J Biol Chem; 2001 Apr; 276(16):13178-85. PubMed ID: 11278798 [TBL] [Abstract][Full Text] [Related]
20. Mutagenesis study on amino acids around the molybdenum centre of the periplasmic nitrate reductase from Ralstonia eutropha. Hettmann T; Siddiqui RA; Frey C; Santos-Silva T; Romão MJ; Diekmann S Biochem Biophys Res Commun; 2004 Aug; 320(4):1211-9. PubMed ID: 15249219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]