BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 33131362)

  • 1. Comparison of gene regulatory networks to identify pathogenic genes for lymphoma.
    Yu X; Weng T; Gu C; Yang H
    J Bioinform Comput Biol; 2020 Oct; 18(5):2050029. PubMed ID: 33131362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinoic acid receptor alpha drives cell cycle progression and is associated with increased sensitivity to retinoids in T-cell lymphoma.
    Wang X; Dasari S; Nowakowski GS; Lazaridis KN; Wieben ED; Kadin ME; Feldman AL; Boddicker RL
    Oncotarget; 2017 Apr; 8(16):26245-26255. PubMed ID: 28412739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of weighted gene co-expression networks in human and mouse.
    Eidsaa M; Stubbs L; Almaas E
    PLoS One; 2017; 12(11):e0187611. PubMed ID: 29161290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of canine diffuse large B-cell lymphoma gene regulatory network: detection of functional modules and hub genes.
    Zamani-Ahmadmahmudi M; Najafi A; Nassiri SM
    J Comp Pathol; 2015; 152(2-3):119-30. PubMed ID: 25678421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Employing decomposable partially observable Markov decision processes to control gene regulatory networks.
    Erdogdu U; Polat F; Alhajj R
    Artif Intell Med; 2017 Nov; 83():14-34. PubMed ID: 28733120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Target Genes and Pathways Associated With Cetuximab Insensitivity in Colorectal Cancer.
    Yu C; Hong H; Lu J; Zhao X; Hu W; Zhang S; Zong Y; Mao Z; Li J; Wang M; Feng B; Sun J; Zheng M
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818806905. PubMed ID: 30336768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Reconstruction and Analysis of Gene Regulatory Networks.
    Zheng G; Huang T
    Methods Mol Biol; 2018; 1754():137-154. PubMed ID: 29536441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ego network analysis approach identified important biomarkers with an association to progression and metastasis of gastric cancer.
    Tian X; Ju H; Yang W
    J Cell Biochem; 2019 Sep; 120(9):15963-15970. PubMed ID: 31081222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. B-cell lymphoma gene regulatory networks: biological consistency among inference methods.
    de Matos Simoes R; Dehmer M; Emmert-Streib F
    Front Genet; 2013; 4():281. PubMed ID: 24379827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data.
    de Matos Simoes R; Dalleau S; Williamson KE; Emmert-Streib F
    BMC Syst Biol; 2015 May; 9():21. PubMed ID: 25971253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of aberrantly methylated differentially expressed genes in breast cancer by integrated bioinformatics analysis.
    Yi L; Luo P; Zhang J
    J Cell Biochem; 2019 Sep; 120(9):16229-16243. PubMed ID: 31081184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic networks responsive to low-intensity pulsed ultrasound in human lymphoma U937 cells.
    Tabuchi Y; Takasaki I; Zhao QL; Wada S; Hori T; Feril LB; Tachibana K; Nomura T; Kondo T
    Cancer Lett; 2008 Nov; 270(2):286-94. PubMed ID: 18571840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T-cell lymphomas associated gene expression signature: Bioinformatics analysis based on gene expression Omnibus.
    Zhou LL; Xu XY; Ni J; Zhao X; Zhou JW; Feng JF
    Eur J Haematol; 2018 Jun; 100(6):575-583. PubMed ID: 29505095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphlet Based Metrics for the Comparison of Gene Regulatory Networks.
    Martin AJ; Dominguez C; Contreras-Riquelme S; Holmes DS; Perez-Acle T
    PLoS One; 2016; 11(10):e0163497. PubMed ID: 27695050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary constraints on the complexity of genetic regulatory networks allow predictions of the total number of genetic interactions.
    Campos AI; Freyre-González JA
    Sci Rep; 2019 Mar; 9(1):3618. PubMed ID: 30842463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sparse and decomposed particle swarm optimization for inferring gene regulatory networks based on fuzzy cognitive maps.
    Liu L; Liu J
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950023. PubMed ID: 31617458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.