BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 33131430)

  • 1. An
    Azam F; Taban IM; Eid EEM; Iqbal M; Alam O; Khan S; Mahmood D; Anwar MJ; Khalilullah H; Khan MU
    J Biomol Struct Dyn; 2022 Apr; 40(6):2851-2864. PubMed ID: 33131430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets.
    Bello M
    J Biomol Struct Dyn; 2022 Nov; 40(18):8375-8383. PubMed ID: 33843474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications.
    Qureshi U; Mir S; Naz S; Nur-E-Alam M; Ahmed S; Ul-Haq Z
    J Biomol Struct Dyn; 2022 Oct; 40(17):8100-8111. PubMed ID: 33950784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with
    Sen Gupta PS; Biswal S; Panda SK; Ray AK; Rana MK
    J Biomol Struct Dyn; 2022 Mar; 40(5):2217-2226. PubMed ID: 33111618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication.
    Low ZY; Yip AJW; Lal SK
    Biochim Biophys Acta Mol Basis Dis; 2022 Feb; 1868(2):166294. PubMed ID: 34687900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The broad spectrum host-directed agent ivermectin as an antiviral for SARS-CoV-2 ?
    Jans DA; Wagstaff KM
    Biochem Biophys Res Commun; 2021 Jan; 538():163-172. PubMed ID: 33341233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients.
    Segatori VI; Garona J; Caligiuri LG; Bizzotto J; Lavignolle R; Toro A; Sanchis P; Spitzer E; Krolewiecki A; Gueron G; Alonso DF
    Viruses; 2021 Oct; 13(10):. PubMed ID: 34696514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Effective Therapeutic Molecule from Natural Sources against Coronavirus Protease.
    Fadaka AO; Sibuyi NRS; Martin DR; Klein A; Madiehe A; Meyer M
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ebselen suitably interacts with the potential SARS-CoV-2 targets: an
    Sarkar C; Abdalla M; Mondal M; Khalipha ABR; Ali N
    J Biomol Struct Dyn; 2022; 40(22):12286-12301. PubMed ID: 34459720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding behavior of receptor binding domain of the SARS-CoV-2 virus and ivermectin.
    Gossen KR; Zhang M; Nikolov ZL; Fernando SD; King MD
    Sci Rep; 2024 Feb; 14(1):2743. PubMed ID: 38302638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective mode of action of Ivermectin: SARS-CoV-2.
    Patil VM; Verma S; Masand N
    Eur J Med Chem Rep; 2022 Apr; 4():100018. PubMed ID: 36593981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational exploration of the dual role of the phytochemical fortunellin: Antiviral activities against SARS-CoV-2 and immunomodulatory abilities against the host.
    Agrawal S; Pathak E; Mishra R; Mishra V; Parveen A; Mishra SK; Byadgi PS; Dubey SK; Chaudhary AK; Singh V; Chaurasia RN; Atri N
    Comput Biol Med; 2022 Oct; 149():106049. PubMed ID: 36103744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach.
    González-Paz L; Hurtado-León ML; Lossada C; Fernández-Materán FV; Vera-Villalobos J; Loroño M; Paz JL; Jeffreys L; Alvarado YJ
    Biophys Chem; 2021 Nov; 278():106677. PubMed ID: 34428682
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Rajendran M; Roy S; Ravichandran K; Mishra B; Gupta DK; Nagarajan S; Arul Selvaraj RC; Provaznik I
    J Biomol Struct Dyn; 2022 Apr; 40(7):3155-3169. PubMed ID: 33200680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Silico Evaluation of Prospective Anti-COVID-19 Drug Candidates as Potential SARS-CoV-2 Main Protease Inhibitors.
    Ibrahim MAA; Abdelrahman AHM; Allemailem KS; Almatroudi A; Moustafa MF; Hegazy MF
    Protein J; 2021 Jun; 40(3):296-309. PubMed ID: 33387249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Could the COVID-19-Driven Increased Use of Ivermectin Lead to Incidents of Imbalanced Gut Microbiota and Dysbiosis?
    Dicks LMT; Deane SM; Grobbelaar MJ
    Probiotics Antimicrob Proteins; 2022 Apr; 14(2):217-223. PubMed ID: 35218001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Some Flavolignans as Potent Sars-Cov-2 Inhibitors
    Cetin A
    Curr Comput Aided Drug Des; 2022; 18(5):337-346. PubMed ID: 35975852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring potential inhibitor of SARS-CoV2 replicase from FDA approved drugs using insilico drug discovery methods.
    Chandra A; Gurjar V; Ahmed MZ; Alqahtani AS; Qamar I; Singh N
    J Biomol Struct Dyn; 2022 Aug; 40(12):5507-5514. PubMed ID: 33491573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Docking of Azithromycin, Ritonavir, Lopinavir, Oseltamivir, Ivermectin and Heparin Interacting with Coronavirus Disease 2019 Main and Severe Acute Respiratory Syndrome Coronavirus-2 3C-Like Proteases.
    Arouche TDS; Martins AY; Ramalho TC; Júnior RNC; Costa FLP; Filho TSA; Neto AMJC
    J Nanosci Nanotechnol; 2021 Apr; 21(4):2075-2089. PubMed ID: 33500022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modelling identification of phytocompounds from selected African botanicals as promising therapeutics against druggable human host cell targets of SARS-CoV-2.
    Uhomoibhi JO; Shode FO; Idowu KA; Sabiu S
    J Mol Graph Model; 2022 Jul; 114():108185. PubMed ID: 35430474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.