BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33131730)

  • 1. Toxicity profiling of metallosurfactant based ruthenium and ruthenium oxide nanoparticles towards the eukaryotic model organism Saccharomyces cerevisiae.
    Dogra V; Kaur G; Kumar R; Kumar S
    Chemosphere; 2021 May; 270():128650. PubMed ID: 33131730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bactericidal effects of metallosurfactants based cobalt oxide/hydroxide nanoparticles against Staphylococcus aureus.
    Dogra V; Kaur G; Jindal S; Kumar R; Kumar S; Singhal NK
    Sci Total Environ; 2019 Sep; 681():350-364. PubMed ID: 31117016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro assessment of antimicrobial and genotoxic effect of metallosurfactant based nickel hydroxide nanoparticles against Escherichia coli and its genomic DNA.
    Dogra V; Kaur G; Kaur A; Kumar R; Kumar S
    Colloids Surf B Biointerfaces; 2018 Oct; 170():99-108. PubMed ID: 29894838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity assessment of palladium oxide nanoparticles derived from metallosurfactants using multi assay techniques in Allium sativum.
    Dogra V; Kaur G; Kumar R; Kumar S
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110752. PubMed ID: 31911039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of iron oxide nanocolloids using metallosurfactant-based microemulsions: antioxidant activity, cellular, and genotoxicity toward Vitis vinifera.
    Kaur G; Dogra V; Kumar R; Kumar S; Singh K
    J Biomol Struct Dyn; 2019 Mar; 37(4):892-909. PubMed ID: 29448887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA interaction, anti-proliferative effect of copper oxide nanocolloids prepared from metallosurfactant based microemulsions acting as precursor, template and reducing agent.
    Kaur G; Dogra V; Kumar R; Kumar S; Bhanjana G; Dilbaghi N; Singhal NK
    Int J Pharm; 2018 Jan; 535(1-2):95-105. PubMed ID: 29102701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae.
    García-Saucedo C; Field JA; Otero-Gonzalez L; Sierra-Álvarez R
    J Hazard Mater; 2011 Sep; 192(3):1572-9. PubMed ID: 21782338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of TiO₂, ZrO₂, Fe⁰, Fe₂O₃, and Mn₂O₃ nanoparticles to the yeast, Saccharomyces cerevisiae.
    Otero-González L; García-Saucedo C; Field JA; Sierra-Álvarez R
    Chemosphere; 2013 Oct; 93(6):1201-6. PubMed ID: 23886442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmful effects of metal(loid) oxide nanoparticles.
    Soares EV; Soares HMVM
    Appl Microbiol Biotechnol; 2021 Feb; 105(4):1379-1394. PubMed ID: 33521847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc oxide nanoparticles induce toxicity by affecting cell wall integrity pathway, mitochondrial function and lipid homeostasis in Saccharomyces cerevisiae.
    Babele PK; Thakre PK; Kumawat R; Tomar RS
    Chemosphere; 2018 Dec; 213():65-75. PubMed ID: 30212720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae.
    Salunke BK; Sawant SS; Lee SI; Kim BS
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5419-27. PubMed ID: 25846336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nickel oxide (NiO) nanoparticles disturb physiology and induce cell death in the yeast Saccharomyces cerevisiae.
    Sousa CA; Soares HMVM; Soares EV
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2827-2838. PubMed ID: 29423633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel Oxide Nanoparticles Trigger Caspase- and Mitochondria-Dependent Apoptosis in the Yeast Saccharomyces cerevisiae.
    Sousa CA; Soares HMVM; Soares EV
    Chem Res Toxicol; 2019 Feb; 32(2):245-254. PubMed ID: 30656935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxicity of gold nanoparticles functionalized with indolicidin towards Saccharomyces cerevisiae.
    de Alteriis E; Falanga A; Galdiero S; Guida M; Maselli V; Galdiero E
    J Environ Sci (China); 2018 Apr; 66():138-145. PubMed ID: 29628080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical properties, antifungal activity and cytotoxicity of selenium sulfide nanoparticles green synthesized by Saccharomyces cerevisiae.
    Asghari-Paskiabi F; Imani M; Rafii-Tabar H; Razzaghi-Abyaneh M
    Biochem Biophys Res Commun; 2019 Sep; 516(4):1078-1084. PubMed ID: 31280861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Sensitive Detection of Arsenite Based on Its Affinity toward Ruthenium Nanoparticles Decorated on Glassy Carbon Electrode.
    Gupta R; Gamare JS; Pandey AK; Tyagi D; Kamat JV
    Anal Chem; 2016 Feb; 88(4):2459-65. PubMed ID: 26776089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the toxicity of CuO nanoparticles by using Saccharomyces cerevisiae mutants with multiple genes deleted.
    Bao S; Lu Q; Fang T; Dai H; Zhang C
    Appl Environ Microbiol; 2015 Dec; 81(23):8098-107. PubMed ID: 26386067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleus-targeting ultrasmall ruthenium(iv) oxide nanoparticles for photoacoustic imaging and low-temperature photothermal therapy in the NIR-II window.
    Liu Z; Qiu K; Liao X; Rees TW; Chen Y; Zhao Z; Ji L; Chao H
    Chem Commun (Camb); 2020 Mar; 56(20):3019-3022. PubMed ID: 32048647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper oxide nanoparticles inhibit the metabolic activity of Saccharomyces cerevisiae.
    Mashock MJ; Kappell AD; Hallaj N; Hristova KR
    Environ Toxicol Chem; 2016 Jan; 35(1):134-43. PubMed ID: 26178758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.