These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 33131839)
1. How permafrost degradation threatens boreal forest growth on its southern margin? Li Y; Liu H; Zhu X; Yue Y; Xue J; Shi L Sci Total Environ; 2021 Mar; 762():143154. PubMed ID: 33131839 [TBL] [Abstract][Full Text] [Related]
2. Tree growth is connected with distribution and warming-induced degradation of permafrost in southern Siberia. Peng R; Liu H; Anenkhonov OA; Sandanov DV; Korolyuk AY; Shi L; Xu C; Dai J; Wang L Glob Chang Biol; 2022 Sep; 28(17):5243-5253. PubMed ID: 35652259 [TBL] [Abstract][Full Text] [Related]
3. Transitional responses of tree growth to climate warming at the southernmost margin of high latitudinal permafrost distribution. Shi L; Liu H; Wang L; Peng R; He H; Liang B; Cao J Sci Total Environ; 2024 Jan; 908():168503. PubMed ID: 37952654 [TBL] [Abstract][Full Text] [Related]
4. Unexpected greening in a boreal permafrost peatland undergoing forest loss is partially attributable to tree species turnover. Dearborn KD; Baltzer JL Glob Chang Biol; 2021 Jun; 27(12):2867-2882. PubMed ID: 33742732 [TBL] [Abstract][Full Text] [Related]
5. Growth variations of Dahurian larch plantations across northeast China: Understanding the effects of temperature and precipitation. Jia B; Sun H; Shugart HH; Xu Z; Zhang P; Zhou G J Environ Manage; 2021 Aug; 292():112739. PubMed ID: 34020307 [TBL] [Abstract][Full Text] [Related]
6. Thawing permafrost can mitigate warming-induced drought stress in boreal forest trees. Kirdyanov AV; Saurer M; Arzac A; Knorre AA; Prokushkin AS; Churakova Sidorova OV; Arosio T; Bebchuk T; Siegwolf R; Büntgen U Sci Total Environ; 2024 Feb; 912():168858. PubMed ID: 38030001 [TBL] [Abstract][Full Text] [Related]
7. Contrasting water-use strategies to climate warming in white birch and larch in a boreal permafrost region. Qi X; Treydte K; Saurer M; Fang K; An W; Lehmann M; Liu K; Wu Z; He HS; Du H; Li MH Tree Physiol; 2024 Jun; 44(6):. PubMed ID: 38769900 [TBL] [Abstract][Full Text] [Related]
8. Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests. Zhang X; Manzanedo RD; D'Orangeville L; Rademacher TT; Li J; Bai X; Hou M; Chen Z; Zou F; Song F; Pederson N Glob Chang Biol; 2019 Oct; 25(10):3462-3471. PubMed ID: 31271698 [TBL] [Abstract][Full Text] [Related]
10. Water relations and photosynthetic performance in Larix sibirica growing in the forest-steppe ecotone of northern Mongolia. Dulamsuren C; Hauck M; Bader M; Osokhjargal D; Oyungerel S; Nyambayar S; Runge M; Leuschner C Tree Physiol; 2009 Jan; 29(1):99-110. PubMed ID: 19203936 [TBL] [Abstract][Full Text] [Related]
11. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Berner LT; Beck PS; Bunn AG; Goetz SJ Glob Chang Biol; 2013 Nov; 19(11):3449-62. PubMed ID: 23813896 [TBL] [Abstract][Full Text] [Related]
12. Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia. Zhang-Turpeinen H; Kivimäenpää M; Aaltonen H; Berninger F; Köster E; Köster K; Menyailo O; Prokushkin A; Pumpanen J Sci Total Environ; 2020 Apr; 711():134851. PubMed ID: 32000328 [TBL] [Abstract][Full Text] [Related]
13. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss. Helbig M; Wischnewski K; Kljun N; Chasmer LE; Quinton WL; Detto M; Sonnentag O Glob Chang Biol; 2016 Dec; 22(12):4048-4066. PubMed ID: 27153776 [TBL] [Abstract][Full Text] [Related]
14. Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest steppe. Khansaritoreh E; Dulamsuren C; Klinge M; Ariunbaatar T; Bat-Enerel B; Batsaikhan G; Ganbaatar K; Saindovdon D; Yeruult Y; Tsogtbaatar J; Tuya D; Leuschner C; Hauck M Glob Chang Biol; 2017 Sep; 23(9):3675-3689. PubMed ID: 28470864 [TBL] [Abstract][Full Text] [Related]
15. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland. Lara MJ; Genet H; McGuire AD; Euskirchen ES; Zhang Y; Brown DR; Jorgenson MT; Romanovsky V; Breen A; Bolton WR Glob Chang Biol; 2016 Feb; 22(2):816-29. PubMed ID: 26463267 [TBL] [Abstract][Full Text] [Related]
16. Altitudinal disparity in growth of Dahurian larch (Larix gmelinii Rupr.) in response to recent climate change in northeast China. Bai X; Zhang X; Li J; Duan X; Jin Y; Chen Z Sci Total Environ; 2019 Jun; 670():466-477. PubMed ID: 30904658 [TBL] [Abstract][Full Text] [Related]
17. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape. Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625 [TBL] [Abstract][Full Text] [Related]
18. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia. Knorre AA; Kirdyanov AV; Prokushkin AS; Krusic PJ; Büntgen U Sci Total Environ; 2019 Feb; 652():314-319. PubMed ID: 30366332 [TBL] [Abstract][Full Text] [Related]
19. [Impacts of rapid warming on radial growth of Larix gmelinii on two typical micro-topographies in the recent 30 years]. Bai XP; Chang YX; Zhang XL; Ma YJ; Wu T; Li JX; Chen ZJ Ying Yong Sheng Tai Xue Bao; 2016 Dec; 27(12):3853-3861. PubMed ID: 29704343 [TBL] [Abstract][Full Text] [Related]
20. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China]. Luo X; Wang YL; Zhang JQ Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):713-724. PubMed ID: 29722211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]