These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33131839)

  • 21. Effects of stand age, tree species, and climate on water table fluctuations and estimated evapotranspiration in managed peatland forests.
    Stelling JM; Slesak RA; Windmuller-Campione MA; Grinde A
    J Environ Manage; 2023 Aug; 339():117783. PubMed ID: 37058930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New tree-ring data from Canadian boreal and hemi-boreal forests provide insight for improving the climate sensitivity of terrestrial biosphere models.
    Mirabel A; Girardin MP; Metsaranta J; Campbell EM; Arsenault A; Reich PB; Way D
    Sci Total Environ; 2022 Dec; 851(Pt 2):158062. PubMed ID: 35981579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Desai AR; Kljun N; Quinton WL; Sonnentag O
    Glob Chang Biol; 2017 Aug; 23(8):3231-3248. PubMed ID: 28132402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Response differences of radial growth of
    Yang JW; Zhang QL; Song WQ; Zhang X; Li ZS; Zhang YD; Wang XC
    Ying Yong Sheng Tai Xue Bao; 2021 Oct; 32(10):3415-3427. PubMed ID: 34676702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Responses of radial growth of
    Guo XM; Wang ZP; Zhang N; Zhang DY
    Ying Yong Sheng Tai Xue Bao; 2021 Oct; 32(10):3405-3414. PubMed ID: 34676701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.
    Fisher JP; Estop-Aragonés C; Thierry A; Charman DJ; Wolfe SA; Hartley IP; Murton JB; Williams M; Phoenix GK
    Glob Chang Biol; 2016 Sep; 22(9):3127-40. PubMed ID: 26855070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth decline linked to warming-induced water limitation in hemi-boreal forests.
    Wu X; Liu H; Guo D; Anenkhonov OA; Badmaeva NK; Sandanov DV
    PLoS One; 2012; 7(8):e42619. PubMed ID: 22916142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Warming and CO2 enrichment modified the ecophysiological responses of Dahurian larch and Mongolia pine during the past century in the permafrost of northeastern China.
    Liu X; Zhao L; Voelker S; Xu G; Zeng X; Zhang X; Zhang L; Sun W; Zhang Q; Wu G; Li X
    Tree Physiol; 2019 Jan; 39(1):88-103. PubMed ID: 29920609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diverging climate trends in Mongolian taiga forests influence growth and regeneration of Larix sibirica.
    Dulamsuren C; Hauck M; Khishigjargal M; Leuschner HH; Leuschner C
    Oecologia; 2010 Aug; 163(4):1091-102. PubMed ID: 20571829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reassessment of growth-climate relations indicates the potential for decline across Eurasian boreal larch forests.
    Li W; Manzanedo RD; Jiang Y; Ma W; Du E; Zhao S; Rademacher T; Dong M; Xu H; Kang X; Wang J; Wu F; Cui X; Pederson N
    Nat Commun; 2023 Jun; 14(1):3358. PubMed ID: 37291110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drought stress mitigation by nitrogen in boreal forests inferred from stable isotopes.
    Dulamsuren C; Hauck M
    Glob Chang Biol; 2021 Oct; 27(20):5211-5224. PubMed ID: 34309985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature signal recorded in δ
    Wang Y; Liu X; Anhäuser T; Lu Q; Zeng X; Zhang Q; Wang K; Zhang L; Zhang Y; Keppler F
    Sci Total Environ; 2020 Jul; 727():138558. PubMed ID: 32498208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid migration of Mongolian oak into the southern Asian boreal forest.
    Tang Y; Du E; Guo H; Wang Y; Peñuelas J; Reich PB
    Glob Chang Biol; 2024 Jan; 30(1):e17002. PubMed ID: 37916481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Permafrost degradation alters the environmental signals recorded in tree-ring lignin methoxy group δ
    Wang Y; Liu X; Treydte K; Zhang Z; Kang H; Zeng X; Xu G; Wu Q; Kang S
    Sci Total Environ; 2023 Feb; 860():160519. PubMed ID: 36442636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Warming-driven increased synchrony of tree growth across the southernmost part of the Asian boreal forests.
    Li W; Jiang Y; Lin Z; Wang J; Zhang Y; Ma W
    Sci Total Environ; 2024 Aug; 938():173389. PubMed ID: 38810743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature-induced water stress in high-latitude forests in response to natural and anthropogenic warming.
    Trahan MW; Schubert BA
    Glob Chang Biol; 2016 Feb; 22(2):782-91. PubMed ID: 26451763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska.
    Pastick NJ; Duffy P; Genet H; Rupp TS; Wylie BK; Johnson KD; Jorgenson MT; Bliss N; McGuire AD; Jafarov EE; Knight JF
    Ecol Appl; 2017 Jul; 27(5):1383-1402. PubMed ID: 28390104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active layer depth and soil properties impact specific leaf area variation and ecosystem productivity in a boreal forest.
    Anderson CG; Bond-Lamberty B; Stegen JC
    PLoS One; 2020; 15(12):e0232506. PubMed ID: 33382711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Responses of radial growth of
    Wang H; Wang XX; Jia JH; Zhang ZH; Guo MM
    Ying Yong Sheng Tai Xue Bao; 2023 Oct; 34(10):2629-2636. PubMed ID: 37897269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost.
    Köster E; Köster K; Berninger F; Prokushkin A; Aaltonen H; Zhou X; Pumpanen J
    J Environ Manage; 2018 Dec; 228():405-415. PubMed ID: 30243076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.