These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33131859)

  • 21. Greenhouse gas emissions from advanced nitrogen-removal onsite wastewater treatment systems.
    Ross BN; Lancellotti BV; Brannon EQ; Loomis GW; Amador JA
    Sci Total Environ; 2020 Oct; 737():140399. PubMed ID: 32783877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta-analysis.
    Tan L; Ge Z; Zhou X; Li S; Li X; Tang J
    Glob Chang Biol; 2020 Mar; 26(3):1638-1653. PubMed ID: 31755630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.
    Knox SH; Sturtevant C; Matthes JH; Koteen L; Verfaillie J; Baldocchi D
    Glob Chang Biol; 2015 Feb; 21(2):750-65. PubMed ID: 25229180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of different vegetation zones on CH4 and N2O emissions in coastal wetlands: a model case study.
    Liu Y; Wang L; Bao S; Liu H; Yu J; Wang Y; Shao H; Ouyang Y; An S
    ScientificWorldJournal; 2014; 2014():412183. PubMed ID: 24892044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Greenhouse gas emissions limited by low nitrogen and carbon availability in natural, restored, and agricultural Oregon seasonal wetlands.
    Pfeifer-Meister L; Gayton LG; Roy BA; Johnson BR; Bridgham SD
    PeerJ; 2018; 6():e5465. PubMed ID: 30186683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics of CH
    Chen Q; Guo B; Zhao C; Xing B
    Environ Pollut; 2018 Aug; 239():289-299. PubMed ID: 29660501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.
    Baah-Acheamfour M; Carlyle CN; Lim SS; Bork EW; Chang SX
    Sci Total Environ; 2016 Nov; 571():1115-27. PubMed ID: 27450260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley - winter wheat cropping sequence.
    Krauss M; Ruser R; Müller T; Hansen S; Mäder P; Gattinger A
    Agric Ecosyst Environ; 2017 Feb; 239():324-333. PubMed ID: 28366969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial and temporal variations of the greenhouse gas emissions in coastal saline wetlands in southeastern China.
    Cao L; Zhou Z; Xu X; Shi F
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):1118-1130. PubMed ID: 31820246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.
    Chen Y; Chen G; Ye Y
    Sci Total Environ; 2015 Sep; 526():19-28. PubMed ID: 25918889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impoundment increases methane emissions in Phragmites-invaded coastal wetlands.
    Sanders-DeMott R; Eagle MJ; Kroeger KD; Wang F; Brooks TW; O'Keefe Suttles JA; Nick SK; Mann AG; Tang J
    Glob Chang Biol; 2022 Aug; 28(15):4539-4557. PubMed ID: 35616054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon stocks and greenhouse gas emissions (CH
    Hernández ME; Junca-Gómez D
    Sci Total Environ; 2020 Nov; 741():140276. PubMed ID: 32886970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio.
    Nag SK; Liu R; Lal R
    Environ Monit Assess; 2017 Oct; 189(11):580. PubMed ID: 29063197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial and Temporal Variability and Driving Factors of Carbon Dioxide and Nitrous Oxide Fluxes in Alpine Wetland Ecosystems.
    Yu B; Xu W; Yan L; Bao H; Yu H
    Plants (Basel); 2022 Oct; 11(21):. PubMed ID: 36365276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses.
    Morse JL; Ardón M; Bernhardt ES
    Ecol Appl; 2012 Jan; 22(1):264-80. PubMed ID: 22471089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can flooding-induced greenhouse gas emissions be mitigated by trait-based plant species choice?
    Oram NJ; van Groenigen JW; Bodelier PLE; Brenzinger K; Cornelissen JHC; De Deyn GB; Abalos D
    Sci Total Environ; 2020 Jul; 727():138476. PubMed ID: 32330711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emission dynamics of greenhouse gases regulated by fluctuation of water level in river-connected wetland.
    Jin Q; Liu H; Xu X; Zhao L; Chen L; Chen L; Shi R; Li W
    J Environ Manage; 2023 Mar; 329():117091. PubMed ID: 36584511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pasture enclosures increase soil carbon dioxide flux rate in Semiarid Rangeland, Kenya.
    Oduor CO; Karanja N; Onwong'a R; Mureithi S; Pelster D; Nyberg G
    Carbon Balance Manag; 2018 Dec; 13(1):24. PubMed ID: 30535874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon dioxide, methane and nitrous oxide emissions from the human-impacted Seine watershed in France.
    Marescaux A; Thieu V; Garnier J
    Sci Total Environ; 2018 Dec; 643():247-259. PubMed ID: 29936166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. River-floodplain restoration and hydrological effects on GHG emissions: Biogeochemical dynamics in the parafluvial zone.
    Machado Dos Santos Pinto R; Weigelhofer G; Diaz-Pines E; Guerreiro Brito A; Zechmeister-Boltenstern S; Hein T
    Sci Total Environ; 2020 May; 715():136980. PubMed ID: 32014785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.