These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33131870)

  • 1. Potentially toxic element accumulation in badgers (Meles meles): a compositional approach.
    Mullineaux ST; Redpath SHA; Ogle N; McKinley JM; Marks NJ; Scantlebury DM; Doherty R
    Sci Total Environ; 2021 Mar; 762():143087. PubMed ID: 33131870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal (PTE) ecotoxicology, data review: Traditional vs. a compositional approach.
    Mullineaux ST; McKinley JM; Marks NJ; Scantlebury DM; Doherty R
    Sci Total Environ; 2021 May; 769():145246. PubMed ID: 33736251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between soil and badger elemental concentrations across a heterogeneously contaminated landscape.
    Sartorius A; Cahoon M; Corbetta D; Grau-Roma L; Johnson MF; Sandoval Barron E; Smallman-Raynor M; Swift BMC; Yon L; Young S; Bennett M
    Sci Total Environ; 2023 Apr; 869():161684. PubMed ID: 36690105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of health risks associated with potentially toxic element contamination of soil by end-of-life ship dismantling in Bangladesh.
    Alam I; Barua S; Ishii K; Mizutani S; Hossain MM; Rahman IMM; Hasegawa H
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):24162-24175. PubMed ID: 31228056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal and metalloid concentrations in wild mammals from SW Europe: European hedgehog (Erinaceus europaeus) and badger (Meles meles).
    García-Muñoz J; Cacciola NA; Plazzi F; Prado Míguez-Santiyán M; Rodríguez FS; López-Beceiro A; Fidalgo LE; Martínez-Morcillo S; Pérez-López M
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118855-118870. PubMed ID: 37922086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccumulation of potentially toxic elements within the soil-plant system in Central Balkan region: analysis of the forest ecosystem capacity to mediate toxic elements.
    Yaneva R; Zhiyanski M; Dodev Y
    Environ Geochem Health; 2022 Feb; 44(2):563-577. PubMed ID: 33140226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovering hidden spatial patterns and their associations with controlling factors for potentially toxic elements in topsoil using hot spot analysis and K-means clustering analysis.
    Xu H; Croot P; Zhang C
    Environ Int; 2021 Jun; 151():106456. PubMed ID: 33662887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential toxic trace element (PTE) contamination in Baoji urban soil (NW China): spatial distribution, mobility behavior, and health risk.
    Li X; Wu T; Bao H; Liu X; Xu C; Zhao Y; Liu D; Yu H
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19749-19766. PubMed ID: 28685332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of culling and vaccination on bovine tuberculosis infection in a European badger (Meles meles) population by spatial simulation modelling.
    Abdou M; Frankena K; O'Keeffe J; Byrne AW
    Prev Vet Med; 2016 Mar; 125():19-30. PubMed ID: 26774448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile).
    Reyes A; Thiombane M; Panico A; Daniele L; Lima A; Di Bonito M; De Vivo B
    Environ Geochem Health; 2020 Aug; 42(8):2573-2594. PubMed ID: 31446574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term simulation of potentially toxic elements (PTEs) accumulation and breakthrough in infiltration-based stormwater management practices (SMPs).
    Behbahani A; Ryan RJ; McKenzie ER
    J Contam Hydrol; 2020 Oct; 234():103685. PubMed ID: 32799044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying the sources and spatial patterns of potentially toxic trace elements (PTEs) in Shanghai suburb soils using global and local regression models.
    Liu Y; Fei X; Zhang Z; Li Y; Tang J; Xiao R
    Environ Pollut; 2020 Sep; 264():114171. PubMed ID: 32387996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk assessment of total and bioavailable potentially toxic elements (PTEs) in urban soils of Baghdad-Iraq.
    Hamad SH; Schauer JJ; Shafer MM; Al-Rheem EA; Skaar PS; Heo J; Tejedor-Tejedor I
    Sci Total Environ; 2014 Oct; 494-495():39-48. PubMed ID: 25029503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to assess the degree of contamination and determine sources and risks related to PTEs in an urban environment: the case study of Santiago (Chile).
    Aruta A; Albanese S; Daniele L; Cannatelli C; Buscher JT; De Vivo B; Petrik A; Cicchella D; Lima A
    Environ Geochem Health; 2023 Feb; 45(2):275-297. PubMed ID: 35014008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental factors controlling potentially toxic element behaviour in urban soils, El Tebbin, Egypt.
    Said I; Salman SAE; Samy Y; Awad SA; Melegy A; Hursthouse AS
    Environ Monit Assess; 2019 Apr; 191(5):267. PubMed ID: 30955117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model of Selective and Non-Selective Management of Badgers (Meles meles) to Control Bovine Tuberculosis in Badgers and Cattle.
    Smith GC; Delahay RJ; McDonald RA; Budgey R
    PLoS One; 2016; 11(11):e0167206. PubMed ID: 27893809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal analyses of metrics of tuberculosis infection in badgers (Meles meles) from the Republic of Ireland: Trends in apparent prevalence.
    Byrne AW; Kenny K; Fogarty U; O'Keeffe JJ; More SJ; McGrath G; Teeling M; Martin SW; Dohoo IR
    Prev Vet Med; 2015 Dec; 122(3):345-54. PubMed ID: 26556049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative effects of biochar-nanosheets and conventional organic-amendments on health risks abatement of potentially toxic elements via consumption of wheat grown on industrially contaminated-soil.
    Yousaf B; Liu G; Abbas Q; Ullah H; Wang R; Zia-Ur-Rehman M; Amina ; Niu Z
    Chemosphere; 2018 Feb; 192():161-170. PubMed ID: 29101855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China.
    Jia Z; Wang J; Zhou X; Zhou Y; Li Y; Li B; Zhou S
    Environ Pollut; 2020 Jan; 256():113505. PubMed ID: 31706759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risk-based assessment of soil pollution by potentially toxic elements in the industrialized urban and peri-urban areas of Ahvaz metropolis, southwest of Iran.
    Keshavarzi B; Najmeddin A; Moore F; Afshari Moghaddam P
    Ecotoxicol Environ Saf; 2019 Jan; 167():365-375. PubMed ID: 30359903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.