These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33132001)

  • 21. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization.
    Zhou J; Liu S; Zhou N; Fan L; Zhang Y; Peng P; Anderson E; Ding K; Wang Y; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2018 May; 256():295-301. PubMed ID: 29455097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production.
    Ghodke PK; Sharma AK; Pandey JK; Chen WH; Patel A; Ashokkumar V
    J Environ Manage; 2021 Nov; 298():113450. PubMed ID: 34388542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supercritical water pyrolysis of sewage sludge.
    Ma W; Du G; Li J; Fang Y; Hou L; Chen G; Ma D
    Waste Manag; 2017 Jan; 59():371-378. PubMed ID: 27836517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.
    Xie Q; Peng P; Liu S; Min M; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2014 Nov; 172():162-168. PubMed ID: 25260179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of catalysts on distribution of polycyclic-aromatic hydrocarbon (PAHs) in bio-oils from the pyrolysis of dewatered sewage sludge at high and low temperatures.
    Hu Y; Yu W; Wibowo H; Xia Y; Lu Y; Yan M
    Sci Total Environ; 2019 Jun; 667():263-270. PubMed ID: 30831366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of H
    Shi K; Yan J; Menéndez JA; Luo X; Yang G; Chen Y; Lester E; Wu T
    Front Chem; 2020; 8():3. PubMed ID: 32039161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tar-free fuel gas production from high temperature pyrolysis of sewage sludge.
    Zhang L; Xiao B; Hu Z; Liu S; Cheng G; He P; Sun L
    Waste Manag; 2014 Jan; 34(1):180-4. PubMed ID: 24220150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dewatering and granulation of sewage sludge by biophysical drying and thermo-degradation performance of prepared sludge particles during succedent fast pyrolysis.
    Han R; Liu J; Zhang Y; Fan X; Lu W; Wang H
    Bioresour Technol; 2012 Mar; 107():429-36. PubMed ID: 22230778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of bio-oil and biochar from high-temperature pyrolysis of sewage sludge.
    Chen H; Zhai Y; Xu B; Xiang B; Zhu L; Qiu L; Liu X; Li C; Zeng G
    Environ Technol; 2015; 36(1-4):470-8. PubMed ID: 25518986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of pyrolytic liquids from industrial sewage sludges in an induction-heating reactor.
    Tsai WT; Chang JH; Hsien KJ; Chang YM
    Bioresour Technol; 2009 Jan; 100(1):406-12. PubMed ID: 18656347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigations on the pyrolysis of microalgal-bacterial granular sludge: Products, kinetics, and potential mechanisms.
    Cui B; Chen Z; Guo D; Liu Y
    Bioresour Technol; 2022 Apr; 349():126328. PubMed ID: 34780909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic effect of water content and composite conditioner of Fenton's reagent combined with red mud on the enhanced hydrogen production from sludge pyrolysis.
    Yang J; Song J; Liang S; Guan R; Shi Y; Yu W; Zhu S; Fan W; Hou H; Hu J; Deng H; Xiao B
    Water Res; 2017 Oct; 123():378-387. PubMed ID: 28686940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics.
    Zhao B; Xu X; Zeng F; Li H; Chen X
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19423-19435. PubMed ID: 29728972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Release of hydrogen sulfide during microwave pyrolysis of sewage sludge: Effect of operating parameters and mechanism.
    Zhang J; Zuo W; Tian Y; Yin L; Gong Z; Zhang J
    J Hazard Mater; 2017 Jun; 331():117-122. PubMed ID: 28249180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrolysis derived char from municipal and industrial sludge: Impact of organic decomposition and inorganic accumulation on the fuel characteristics of char.
    Chanaka Udayanga WD; Veksha A; Giannis A; Lim TT
    Waste Manag; 2019 Jan; 83():131-141. PubMed ID: 30514459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge.
    Zuo W; Tian Y; Ren N
    Waste Manag; 2011 Jun; 31(6):1321-6. PubMed ID: 21353518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfur Transformation during Microwave and Conventional Pyrolysis of Sewage Sludge.
    Zhang J; Zuo W; Tian Y; Chen L; Yin L; Zhang J
    Environ Sci Technol; 2017 Jan; 51(1):709-717. PubMed ID: 27982577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar.
    Khanmohammadi Z; Afyuni M; Mosaddeghi MR
    Waste Manag Res; 2015 Mar; 33(3):275-83. PubMed ID: 25595292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.
    Ben Hassen-Trabelsi A; Kraiem T; Naoui S; Belayouni H
    Waste Manag; 2014 Jan; 34(1):210-8. PubMed ID: 24129214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis.
    Xu X; Zhao B; Sun M; Chen X; Zhang M; Li H; Xu S
    Waste Manag; 2017 Apr; 62():91-100. PubMed ID: 28236506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.