These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 33132254)

  • 1. [Resolvins as novel targets for rapid-acting antidepressants].
    Deyama S
    Nihon Yakurigaku Zasshi; 2020; 155(6):381-385. PubMed ID: 33132254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Elucidation of the Mechanisms Underlying the Rapid Antidepressant Actions of Ketamine and Search for Possible Candidates for Novel Rapid-acting Antidepressants].
    Deyama S
    Yakugaku Zasshi; 2023; 143(9):713-720. PubMed ID: 37661437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Resolvin E1 as a potential lead for the treatment of depression].
    Deyama S; Minami M; Kaneda K
    Nihon Yakurigaku Zasshi; 2024; 159(4):210-213. PubMed ID: 38945902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolvins as potential candidates for the treatment of major depressive disorder.
    Deyama S; Minami M; Kaneda K
    J Pharmacol Sci; 2021 Sep; 147(1):33-39. PubMed ID: 34294370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution of depression: antidepressant actions of resolvins.
    Deyama S; Kaneda K; Minami M
    Neurosci Res; 2022 Oct; ():. PubMed ID: 36272561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine.
    Deyama S; Duman RS
    Pharmacol Biochem Behav; 2020 Jan; 188():172837. PubMed ID: 31830487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intranasal Administration of Resolvin E1 Produces Antidepressant-Like Effects via BDNF/VEGF-mTORC1 Signaling in the Medial Prefrontal Cortex.
    Deyama S; Aoki S; Sugie R; Fukuda H; Shuto S; Minami M; Kaneda K
    Neurotherapeutics; 2023 Mar; 20(2):484-501. PubMed ID: 36622634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2
    Fukumoto K; Fogaça MV; Liu RJ; Duman C; Kato T; Li XY; Duman RS
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):297-302. PubMed ID: 30559184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolvin E1/E2 ameliorate lipopolysaccharide-induced depression-like behaviors via ChemR23.
    Deyama S; Shimoda K; Suzuki H; Ishikawa Y; Ishimura K; Fukuda H; Hitora-Imamura N; Ide S; Satoh M; Kaneda K; Shuto S; Minami M
    Psychopharmacology (Berl); 2018 Jan; 235(1):329-336. PubMed ID: 29090333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of ketamine.
    Deyama S; Kaneda K
    Neuropharmacology; 2023 Feb; 224():109335. PubMed ID: 36403852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of mTOR1 signaling in the antidepressant effects of ketamine and the potential of mTORC1 activators as novel antidepressants.
    Kato T
    Neuropharmacology; 2023 Feb; 223():109325. PubMed ID: 36334763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IGF-1 release in the medial prefrontal cortex mediates the rapid and sustained antidepressant-like actions of ketamine.
    Deyama S; Kondo M; Shimada S; Kaneda K
    Transl Psychiatry; 2022 May; 12(1):178. PubMed ID: 35577782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-Methyl-D-aspartate receptor antagonist d-methadone produces rapid, mTORC1-dependent antidepressant effects.
    Fogaça MV; Fukumoto K; Franklin T; Liu RJ; Duman CH; Vitolo OV; Duman RS
    Neuropsychopharmacology; 2019 Dec; 44(13):2230-2238. PubMed ID: 31454827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic mechanisms underlying rapid antidepressant action of ketamine.
    Kavalali ET; Monteggia LM
    Am J Psychiatry; 2012 Nov; 169(11):1150-6. PubMed ID: 23534055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of ketamine action as an antidepressant.
    Zanos P; Gould TD
    Mol Psychiatry; 2018 Apr; 23(4):801-811. PubMed ID: 29532791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ketamine: A tale of two enantiomers.
    Jelen LA; Young AH; Stone JM
    J Psychopharmacol; 2021 Feb; 35(2):109-123. PubMed ID: 33155503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists.
    Duman RS; Li N
    Philos Trans R Soc Lond B Biol Sci; 2012 Sep; 367(1601):2475-84. PubMed ID: 22826346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function.
    Duman RS; Shinohara R; Fogaça MV; Hare B
    Mol Psychiatry; 2019 Dec; 24(12):1816-1832. PubMed ID: 30894661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and Cellular Mechanisms of Rapid-Acting Antidepressants Ketamine and Scopolamine.
    Wohleb ES; Gerhard D; Thomas A; Duman RS
    Curr Neuropharmacol; 2017; 15(1):11-20. PubMed ID: 26955968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites.
    Yang C; Yang J; Luo A; Hashimoto K
    Transl Psychiatry; 2019 Nov; 9(1):280. PubMed ID: 31699965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.