These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33132822)

  • 41. High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in Parkinson's disease.
    Özkurt TE; Butz M; Homburger M; Elben S; Vesper J; Wojtecki L; Schnitzler A
    Exp Neurol; 2011 Jun; 229(2):324-31. PubMed ID: 21376039
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cortico-Striatal Oscillations Are Correlated to Motor Activity Levels in Both Physiological and Parkinsonian Conditions.
    Moënne-Loccoz C; Astudillo-Valenzuela C; Skovgård K; Salazar-Reyes CA; Barrientos SA; García-Núñez XP; Cenci MA; Petersson P; Fuentes-Flores RA
    Front Syst Neurosci; 2020; 14():56. PubMed ID: 32903888
    [TBL] [Abstract][Full Text] [Related]  

  • 43. From intentions to actions: Neural oscillations encode motor processes through phase, amplitude and phase-amplitude coupling.
    Combrisson E; Perrone-Bertolotti M; Soto JL; Alamian G; Kahane P; Lachaux JP; Guillot A; Jerbi K
    Neuroimage; 2017 Feb; 147():473-487. PubMed ID: 27915117
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Peripheral nerve grafts implanted into the substantia nigra in patients with Parkinson's disease during deep brain stimulation surgery: 1-year follow-up study of safety, feasibility, and clinical outcome.
    van Horne CG; Quintero JE; Slevin JT; Anderson-Mooney A; Gurwell JA; Welleford AS; Lamm JR; Wagner RP; Gerhardt GA
    J Neurosurg; 2018 Dec; 129(6):1550-1561. PubMed ID: 29451447
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Can Oscillatory Alpha-Gamma Phase-Amplitude Coupling be Used to Understand and Enhance TMS Effects?
    Wagner J; Makeig S; Hoopes D; Gola M
    Front Hum Neurosci; 2019; 13():263. PubMed ID: 31427937
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Longer β oscillatory episodes reliably identify pathological subthalamic activity in Parkinsonism.
    Deffains M; Iskhakova L; Katabi S; Israel Z; Bergman H
    Mov Disord; 2018 Oct; 33(10):1609-1618. PubMed ID: 30145811
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cerebello-striatal interaction mediates effects of subthalamic nucleus deep brain stimulation in Parkinson's disease.
    Hanssen H; Steinhardt J; Münchau A; Al-Zubaidi A; Tzvi E; Heldmann M; Schramm P; Neumann A; Rasche D; Saryyeva A; Voges J; Galazky I; Büntjen L; Heinze HJ; Krauss JK; Tronnier V; Münte TF; Brüggemann N
    Parkinsonism Relat Disord; 2019 Oct; 67():99-104. PubMed ID: 31494048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson's disease: influence of antiparkinsonian treatment and cortical stimulation.
    Lefaucheur JP
    Clin Neurophysiol; 2005 Feb; 116(2):244-53. PubMed ID: 15661100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pallidal thermolesion unleashes gamma oscillations in the motor cortex in Parkinson's disease.
    de Hemptinne C; Wang DD; Miocinovic S; Chen W; Ostrem JL; Starr PA
    Mov Disord; 2019 Jun; 34(6):903-911. PubMed ID: 30868646
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep brain stimulation of the ventroanterior and ventrolateral thalamus improves motor function in a rat model of Parkinson's disease.
    Tucker HR; Mahoney E; Chhetri A; Unger K; Mamone G; Kim G; Audil A; Moolick B; Molho ES; Pilitsis JG; Shin DS
    Exp Neurol; 2019 Jul; 317():155-167. PubMed ID: 30890329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Frequency-dependent, transient effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling and neuronal activity in the hemiparkinsonian rat.
    So RQ; McConnell GC; Grill WM
    Behav Brain Res; 2017 Mar; 320():119-127. PubMed ID: 27939691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subthalamic neuromodulation improves short-term motor learning in Parkinson's disease.
    de Almeida Marcelino AL; Horn A; Krause P; Kühn AA; Neumann WJ
    Brain; 2019 Aug; 142(8):2198-2206. PubMed ID: 31169872
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proceedings of the Sixth Deep Brain Stimulation Think Tank Modulation of Brain Networks and Application of Advanced Neuroimaging, Neurophysiology, and Optogenetics.
    Ramirez-Zamora A; Giordano J; Boyden ES; Gradinaru V; Gunduz A; Starr PA; Sheth SA; McIntyre CC; Fox MD; Vitek J; Vedam-Mai V; Akbar U; Almeida L; Bronte-Stewart HM; Mayberg HS; Pouratian N; Gittis AH; Singer AC; Creed MC; Lazaro-Munoz G; Richardson M; Rossi MA; Cendejas-Zaragoza L; D'Haese PF; Chiong W; Gilron R; Chizeck H; Ko A; Baker KB; Wagenaar J; Harel N; Deeb W; Foote KD; Okun MS
    Front Neurosci; 2019; 13():936. PubMed ID: 31572109
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stimulation of Cortico-Subthalamic Projections Amplifies Resting Motor Circuit Activity and Leads to Increased Locomotion in Dopamine-Depleted Mice.
    Sanders TH
    Front Integr Neurosci; 2017; 11():24. PubMed ID: 29033800
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unilateral deep brain stimulation suppresses alpha and beta oscillations in sensorimotor cortices.
    Abbasi O; Hirschmann J; Storzer L; Özkurt TE; Elben S; Vesper J; Wojtecki L; Schmitz G; Schnitzler A; Butz M
    Neuroimage; 2018 Jul; 174():201-207. PubMed ID: 29551459
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of cerebellar neuromodulation in movement disorders: A systematic review.
    França C; de Andrade DC; Teixeira MJ; Galhardoni R; Silva V; Barbosa ER; Cury RG
    Brain Stimul; 2018; 11(2):249-260. PubMed ID: 29191439
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resting-state functional magnetic resonance imaging of the subthalamic microlesion and stimulation effects in Parkinson's disease: Indications of a principal role of the brainstem.
    Holiga Š; Mueller K; Möller HE; Urgošík D; Růžička E; Schroeter ML; Jech R
    Neuroimage Clin; 2015; 9():264-74. PubMed ID: 26509113
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phase-dependent modulation as a novel approach for therapeutic brain stimulation.
    Azodi-Avval R; Gharabaghi A
    Front Comput Neurosci; 2015; 9():26. PubMed ID: 25767446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Toward living neuroprosthetics: developing a biological brain pacemaker as a living neuromodulatory implant for improving parkinsonian symptoms.
    Prox J; Seicol B; Qi H; Argall A; Araya N; Behnke N; Guo L
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34010821
    [No Abstract]   [Full Text] [Related]  

  • 60. Proceedings of the 11th Annual Deep Brain Stimulation Think Tank: pushing the forefront of neuromodulation with functional network mapping, biomarkers for adaptive DBS, bioethical dilemmas, AI-guided neuromodulation, and translational advancements.
    Johnson KA; Dosenbach NUF; Gordon EM; Welle CG; Wilkins KB; Bronte-Stewart HM; Voon V; Morishita T; Sakai Y; Merner AR; Lázaro-Muñoz G; Williamson T; Horn A; Gilron R; O'Keeffe J; Gittis AH; Neumann WJ; Little S; Provenza NR; Sheth SA; Fasano A; Holt-Becker AB; Raike RS; Moore L; Pathak YJ; Greene D; Marceglia S; Krinke L; Tan H; Bergman H; Pötter-Nerger M; Sun B; Cabrera LY; McIntyre CC; Harel N; Mayberg HS; Krystal AD; Pouratian N; Starr PA; Foote KD; Okun MS; Wong JK
    Front Hum Neurosci; 2024; 18():1320806. PubMed ID: 38450221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.