These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 33133118)

  • 1. Genotype-Independent Transformation and Genome Editing of
    Cao Chu U; Kumar S; Sigmund A; Johnson K; Li Y; Vongdeuane P; Jones TJ
    Front Plant Sci; 2020; 11():579524. PubMed ID: 33133118
    [No Abstract]   [Full Text] [Related]  

  • 2. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants.
    Cardoza V; Stewart CN
    Plant Cell Rep; 2003 Feb; 21(6):599-604. PubMed ID: 12789436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a stable, effective and universal genetic transformation technique in the diverse species of
    Sheng X; Yu H; Wang J; Shen Y; Gu H
    Front Plant Sci; 2022; 13():1021669. PubMed ID: 36311069
    [No Abstract]   [Full Text] [Related]  

  • 4. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea.
    Bhalla PL; Singh MB
    Nat Protoc; 2008; 3(2):181-9. PubMed ID: 18274519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-Mediated Multiplex Genome Editing of the
    Sun Q; Lin L; Liu D; Wu D; Fang Y; Wu J; Wang Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30208656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpressing Arabidopsis thaliana ACBP6 in transgenic rapid-cycling Brassica napus confers cold tolerance.
    Alahakoon AY; Tongson E; Meng W; Ye ZW; Russell DA; Chye ML; Golz JF; Taylor PWJ
    Plant Methods; 2022 May; 18(1):62. PubMed ID: 35546678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly efficient genetic transformation system for broccoli and subcellular localization.
    Zhao Y; Yang D; Liu Y; Han F; Li Z
    Front Plant Sci; 2023; 14():1091588. PubMed ID: 36937998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus 'Precocity' cultivar.
    Liu XX; Lang SR; Su LQ; Liu X; Wang XF
    Genet Mol Res; 2015 Dec; 14(4):16840-55. PubMed ID: 26681030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A convenient, rapid and efficient method for establishing transgenic lines of
    Zhang K; He J; Liu L; Xie R; Qiu L; Li X; Yuan W; Chen K; Yin Y; Kyaw MMM; San AA; Li S; Tang X; Fu C; Li M
    Plant Methods; 2020; 16():43. PubMed ID: 32256679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and Characterization of a Virulent
    Zou Z; Liu F; Selin C; Fernando WGD
    Front Microbiol; 2020; 11():1969. PubMed ID: 32849487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Brassica napus (canola) explant regeneration for genetic transformation.
    Maheshwari P; Selvaraj G; Kovalchuk I
    N Biotechnol; 2011 Dec; 29(1):144-55. PubMed ID: 21722759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli.
    Sun D; Wang L; Mao X; Fei M; Chen Y; Shen M; Qiu J
    Biotechnol Lett; 2019 Feb; 41(2):293-303. PubMed ID: 30547274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Canola (Brassica napus L.).
    Cardoza V; Stewart CN
    Methods Mol Biol; 2006; 343():257-66. PubMed ID: 16988350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 genome editing through
    Zlobin NE; Lebedeva MV; Taranov VV
    Crit Rev Biotechnol; 2020 Mar; 40(2):153-168. PubMed ID: 31903793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of phenotypic markers to identify Brassica oleracea genotypes for routine high-throughput Agrobacterium-mediated transformation.
    Sparrow PA; Dale PJ; Irwin JA
    Plant Cell Rep; 2004 Aug; 23(1-2):64-70. PubMed ID: 15197481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.
    Ravanfar SA; Aziz MA; Saud HM; Abdullah JO
    Curr Genet; 2015 Nov; 61(4):653-63. PubMed ID: 25986972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat.
    Zhang S; Zhang R; Song G; Gao J; Li W; Han X; Chen M; Li Y; Li G
    BMC Plant Biol; 2018 Nov; 18(1):302. PubMed ID: 30477421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus.
    Okuzaki A; Ogawa T; Koizuka C; Kaneko K; Inaba M; Imamura J; Koizuka N
    Plant Physiol Biochem; 2018 Oct; 131():63-69. PubMed ID: 29753601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.