These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 33133118)

  • 21. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.
    Ravanfar SA; Aziz MA; Saud HM; Abdullah JO
    Curr Genet; 2015 Nov; 61(4):653-63. PubMed ID: 25986972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat.
    Zhang S; Zhang R; Song G; Gao J; Li W; Han X; Chen M; Li Y; Li G
    BMC Plant Biol; 2018 Nov; 18(1):302. PubMed ID: 30477421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus.
    Okuzaki A; Ogawa T; Koizuka C; Kaneko K; Inaba M; Imamura J; Koizuka N
    Plant Physiol Biochem; 2018 Oct; 131():63-69. PubMed ID: 29753601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of transgenic canola plants under field conditions.
    Arnoldo M; Baszczynski CL; Bellemare G; Brown G; Carlson J; Gillespie B; Huang B; MacLean N; MacRae WD; Rayner G
    Genome; 1992 Feb; 35(1):58-63. PubMed ID: 1572528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of Efficient, Reproducible and Stable
    Bakhsh A
    Food Technol Biotechnol; 2020 Mar; 58(1):57-63. PubMed ID: 32684788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the In Vitro Regeneration Potential of Commercial Cultivars of
    Farooq N; Nawaz MA; Mukhtar Z; Ali I; Hundleby P; Ahmad N
    Plants (Basel); 2019 Nov; 8(12):. PubMed ID: 31795525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of CRISPR/Cas9 to Tragopogon (Asteraceae), an evolutionary model for the study of polyploidy.
    Shan S; Mavrodiev EV; Li R; Zhang Z; Hauser BA; Soltis PS; Soltis DE; Yang B
    Mol Ecol Resour; 2018 Nov; 18(6):1427-1443. PubMed ID: 30086204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiplexed CRISPR-Cas9-Based Genome Editing of
    Otoupal PB; Ito M; Arkin AP; Magnuson JK; Gladden JM; Skerker JM
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Multiple Abiotic Stress Tolerance in Canola,
    Lohani N; Jain D; Singh MB; Bhalla PL
    Front Plant Sci; 2020; 11():3. PubMed ID: 32161602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-mediated mutagenesis of homologous genes in Chinese kale.
    Sun B; Zheng A; Jiang M; Xue S; Yuan Q; Jiang L; Chen Q; Li M; Wang Y; Zhang Y; Luo Y; Wang X; Zhang F; Tang H
    Sci Rep; 2018 Nov; 8(1):16786. PubMed ID: 30429497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 35. Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants.
    Wang WC; Menon G; Hansen G
    Plant Cell Rep; 2003 Nov; 22(4):274-81. PubMed ID: 14586552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic transformation of Populus trichocarpa genotype Nisqually-1: a functional genomic tool for woody plants.
    Song J; Lu S; Chen ZZ; Lourenco R; Chiang VL
    Plant Cell Physiol; 2006 Nov; 47(11):1582-9. PubMed ID: 17018558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes.
    Zarinpanjeh N; Motallebi M; Zamani MR; Ziaei M
    J Appl Genet; 2016 Nov; 57(4):417-425. PubMed ID: 26862081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative analysis of lipid-mediated CRISPR-Cas9 genome editing techniques.
    Ringer KP; Roth MG; Garey MS; Piorczynski TB; Suli A; Hansen JM; Alder JK
    Cell Biol Int; 2018 Jul; 42(7):849-858. PubMed ID: 29457665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum.
    Ziaei M; Motallebi M; Zamani MR; Panjeh NZ
    Biotechnol Lett; 2016 Jun; 38(6):1021-32. PubMed ID: 26875090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Efficient, Rapid, and Recyclable System for CRISPR-Mediated Genome Editing in
    Nguyen N; Quail MMF; Hernday AD
    mSphere; 2017; 2(2):. PubMed ID: 28497115
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.