These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33133521)

  • 1. Tailored optical propulsion forces for controlled transport of resonant gold nanoparticles and associated thermal convective fluid flows.
    Rodrigo JA; Angulo M; Alieva T
    Light Sci Appl; 2020; 9():181. PubMed ID: 33133521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optothermally Assembled Nanostructures.
    Li J; Zheng Y
    Acc Mater Res; 2021 May; 2(5):352-363. PubMed ID: 34396151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photothermal Convection Lithography for Rapid and Direct Assembly of Colloidal Plasmonic Nanoparticles on Generic Substrates.
    Jin CM; Lee W; Kim D; Kang T; Choi I
    Small; 2018 Nov; 14(45):e1803055. PubMed ID: 30294867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal Optothermal Manipulations along Various Surfaces.
    Ding H; Kollipara PS; Yao K; Chang Y; Dickinson DJ; Zheng Y
    ACS Nano; 2023 May; 17(10):9280-9289. PubMed ID: 37017427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation.
    Nan F; Yan Z
    Nano Lett; 2018 Nov; 18(11):7400-7406. PubMed ID: 30351963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Optothermal Manipulation of Light-Absorbing Particles in Phase-Change Gel Media.
    Kollipara PS; Wu Z; Yao K; Lin D; Ju Z; Zhang X; Jiang T; Ding H; Fang J; Li J; Korgel BA; Redwing JM; Yu G; Zheng Y
    ACS Nano; 2024 Mar; 18(11):8062-8072. PubMed ID: 38456693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly-Adaptable Optothermal Nanotweezers for Trapping, Sorting, and Assembling across Diverse Nanoparticles.
    Chen J; Zhou J; Peng Y; Dai X; Tan Y; Zhong Y; Li T; Zou Y; Hu R; Cui X; Ho HP; Gao BZ; Zhang H; Chen Y; Wang M; Zhang X; Qu J; Shao Y
    Adv Mater; 2024 Mar; 36(9):e2309143. PubMed ID: 37944998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optothermal Microparticle Oscillator Induced by Marangoni and Thermal Convection.
    Meng C; Lu F; Zhang NQ; Zhou J; Yu P; Zhong MC
    Langmuir; 2024 Apr; 40(14):7463-7470. PubMed ID: 38551336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic transport and manipulation of plasmonic nanoparticles by thermocapillary convection.
    Winterer F; Maier CM; Pernpeintner C; Lohmüller T
    Soft Matter; 2018 Jan; 14(4):628-634. PubMed ID: 29265159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing optofluidic actuation of micro-objects by tagging with plasmonic nanoparticles.
    Burgin J; Si S; Delville MH; Delville JP
    Opt Express; 2014 May; 22(9):10139-50. PubMed ID: 24921718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Manipulation of Lanthanide-Doped Nanoparticles: How to Overcome Their Limitations.
    Ortiz-Rivero E; Labrador-Páez L; Rodríguez-Sevilla P; Haro-González P
    Front Chem; 2020; 8():593398. PubMed ID: 33240853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles.
    Fedoruk M; Meixner M; Carretero-Palacios S; Lohmüller T; Feldmann J
    ACS Nano; 2013 Sep; 7(9):7648-53. PubMed ID: 23941522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High precision and continuous optical transport using a standing wave optical line trap.
    Demergis V; Florin EL
    Opt Express; 2011 Oct; 19(21):20833-48. PubMed ID: 21997093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-assisted, templated self-assembly of gold nanoparticle chains.
    Jaquay E; Martínez LJ; Huang N; Mejia CA; Sarkar D; Povinelli ML
    Nano Lett; 2014 Sep; 14(9):5184-8. PubMed ID: 25153250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Optically Controlled Microscale Elevator Using Plasmonic Janus Particles.
    Nedev S; Carretero-Palacios S; Kühler P; Lohmüller T; Urban AS; Anderson LJ; Feldmann J
    ACS Photonics; 2015 Apr; 2(4):491-496. PubMed ID: 25950013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target trapping and in situ single-cell genetic marker detection with a focused optical beam.
    Cong H; Loo J; Chen J; Wang Y; Kong SK; Ho HP
    Biosens Bioelectron; 2019 May; 133():236-242. PubMed ID: 30953882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.