These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33134431)

  • 1. Warming to the ice bath: Don't go cool on cold water immersion just yet!: Comment on: 1) Arthur J. Cheng. Cooling down the use of cryotherapy for post-exercise skeletal muscle recovery.
    Ihsan M; Abbiss CR; Gregson W; Allan R
    Temperature (Austin); 2020; 7(3):223-225. PubMed ID: 33134431
    [No Abstract]   [Full Text] [Related]  

  • 2. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle.
    Cheng AJ; Willis SJ; Zinner C; Chaillou T; Ivarsson N; Ørtenblad N; Lanner JT; Holmberg HC; Westerblad H
    J Physiol; 2017 Dec; 595(24):7413-7426. PubMed ID: 28980321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Don't Lose Your Cool With Cryotherapy: The Application of Phase Change Material for Prolonged Cooling in Athletic Recovery and Beyond.
    Kwiecien SY; McHugh MP; Howatson G
    Front Sports Act Living; 2020; 2():118. PubMed ID: 33345107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold modalities with different thermodynamic properties have similar effects on muscular performance and activation.
    Vieira A; Oliveira AB; Costa JR; Herrera E; Salvini TF
    Int J Sports Med; 2013 Oct; 34(10):873-80. PubMed ID: 23526594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise.
    Peake JM; Roberts LA; Figueiredo VC; Egner I; Krog S; Aas SN; Suzuki K; Markworth JF; Coombes JS; Cameron-Smith D; Raastad T
    J Physiol; 2017 Feb; 595(3):695-711. PubMed ID: 27704555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat.
    Minett GM; Duffield R; Billaut F; Cannon J; Portus MR; Marino FE
    Scand J Med Sci Sports; 2014 Aug; 24(4):656-66. PubMed ID: 23458430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Impact of Post-exercise Cooling and Heating on Recovery and Training Adaptations: Application to Resistance, Endurance, and Sprint Exercise.
    Chaillou T; Treigyte V; Mosely S; Brazaitis M; Venckunas T; Cheng AJ
    Sports Med Open; 2022 Mar; 8(1):37. PubMed ID: 35254558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re: Don't dive cold when you don't have to.
    Pollock NW
    Diving Hyperb Med; 2015 Sep; 45(3):209. PubMed ID: 26415074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing Cold-Water Immersion for Exercise-Induced Hyperthermia: An Evidence-Based Paper.
    Nye EA; Edler JR; Eberman LE; Games KE
    J Athl Train; 2016 Jun; 51(6):500-1. PubMed ID: 27441949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the ice bath finally melting? Cold water immersion is no greater than active recovery upon local and systemic inflammatory cellular stress in humans.
    Allan R; Mawhinney C
    J Physiol; 2017 Mar; 595(6):1857-1858. PubMed ID: 27991663
    [No Abstract]   [Full Text] [Related]  

  • 11. Postexercise cooling impairs muscle protein synthesis rates in recreational athletes.
    Fuchs CJ; Kouw IWK; Churchward-Venne TA; Smeets JSJ; Senden JM; Lichtenbelt WDVM; Verdijk LB; van Loon LJC
    J Physiol; 2020 Feb; 598(4):755-772. PubMed ID: 31788800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Cold (14° C) vs. Ice (5° C) Water Immersion on Recovery From Intermittent Running Exercise.
    Anderson D; Nunn J; Tyler CJ
    J Strength Cond Res; 2018 Mar; 32(3):764-771. PubMed ID: 29189587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.
    Scott CG; Ducharme MB; Haman F; Kenny GP
    Aviat Space Environ Med; 2004 Nov; 75(11):956-63. PubMed ID: 15558995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of walking and resting after three cryotherapy modalities on the recovery of sensory and motor nerve conduction velocity in healthy subjects.
    Herrera E; Sandoval MC; Camargo DM; Salvini TF
    Rev Bras Fisioter; 2011; 15(3):233-40. PubMed ID: 21829988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryotherapy: not as cool as it seems.
    Nadarajah S; Ariyagunarajah R; Jong ED
    J Physiol; 2018 Feb; 596(4):561-562. PubMed ID: 29315568
    [No Abstract]   [Full Text] [Related]  

  • 16. The use of magnetic resonance imaging to evaluate the effects of cooling on skeletal muscle after strenuous exercise.
    Yanagisawa O; Niitsu M; Yoshioka H; Goto K; Kudo H; Itai Y
    Eur J Appl Physiol; 2003 Mar; 89(1):53-62. PubMed ID: 12627305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing Cold Water Immersion for Exercise-Induced Hyperthermia: A Meta-analysis.
    Zhang Y; Davis JK; Casa DJ; Bishop PA
    Med Sci Sports Exerc; 2015 Nov; 47(11):2464-72. PubMed ID: 25910052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold-Water Immersion for Hyperthermic Humans Wearing American Football Uniforms.
    Miller KC; Swartz EE; Long BC
    J Athl Train; 2015 Aug; 50(8):792-9. PubMed ID: 26090706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle Reaction Time During a Simulated Lateral Ankle Sprain After Wet-Ice Application or Cold-Water Immersion.
    Thain PK; Bleakley CM; Mitchell AC
    J Athl Train; 2015 Jul; 50(7):697-703. PubMed ID: 26067429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.
    Taylor NA; Caldwell JN; Van den Heuvel AM; Patterson MJ
    Med Sci Sports Exerc; 2008 Nov; 40(11):1962-9. PubMed ID: 18845977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.