These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Hold out the genome: a roadmap to solving the cis-regulatory code. de Boer CG; Taipale J Nature; 2024 Jan; 625(7993):41-50. PubMed ID: 38093018 [TBL] [Abstract][Full Text] [Related]
6. Deciphering a transcriptional regulatory code: modeling short-range repression in the Drosophila embryo. Fakhouri WD; Ay A; Sayal R; Dresch J; Dayringer E; Arnosti DN Mol Syst Biol; 2010; 6():341. PubMed ID: 20087339 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional regulation in plants: Using omics data to crack the cis-regulatory code. Zemlyanskaya EV; Dolgikh VA; Levitsky VG; Mironova V Curr Opin Plant Biol; 2021 Oct; 63():102058. PubMed ID: 34098218 [TBL] [Abstract][Full Text] [Related]
8. Information content differentiates enhancers from silencers in mouse photoreceptors. Friedman RZ; Granas DM; Myers CA; Corbo JC; Cohen BA; White MA Elife; 2021 Sep; 10():. PubMed ID: 34486522 [TBL] [Abstract][Full Text] [Related]
9. Deciphering the transcriptional cis-regulatory code. Yáñez-Cuna JO; Kvon EZ; Stark A Trends Genet; 2013 Jan; 29(1):11-22. PubMed ID: 23102583 [TBL] [Abstract][Full Text] [Related]
10. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Kheradpour P; Ernst J; Melnikov A; Rogov P; Wang L; Zhang X; Alston J; Mikkelsen TS; Kellis M Genome Res; 2013 May; 23(5):800-11. PubMed ID: 23512712 [TBL] [Abstract][Full Text] [Related]
11. Discovering epistatic feature interactions from neural network models of regulatory DNA sequences. Greenside P; Shimko T; Fordyce P; Kundaje A Bioinformatics; 2018 Sep; 34(17):i629-i637. PubMed ID: 30423062 [TBL] [Abstract][Full Text] [Related]
12. Deciphering the combinatorial architecture of a Drosophila homeotic gene enhancer. Drewell RA; Nevarez MJ; Kurata JS; Winkler LN; Li L; Dresch JM Mech Dev; 2014 Feb; 131():68-77. PubMed ID: 24514265 [TBL] [Abstract][Full Text] [Related]
13. CompMoby: comparative MobyDick for detection of cis-regulatory motifs. Chaivorapol C; Melton C; Wei G; Yeh RF; Ramalho-Santos M; Blelloch R; Li H BMC Bioinformatics; 2008 Oct; 9():455. PubMed ID: 18950538 [TBL] [Abstract][Full Text] [Related]
14. The Role of Chromatin Accessibility in cis-Regulatory Evolution. Peng PC; Khoueiry P; Girardot C; Reddington JP; Garfield DA; Furlong EEM; Sinha S Genome Biol Evol; 2019 Jul; 11(7):1813-1828. PubMed ID: 31114856 [TBL] [Abstract][Full Text] [Related]
15. The identification of cis-regulatory elements: A review from a machine learning perspective. Li Y; Chen CY; Kaye AM; Wasserman WW Biosystems; 2015 Dec; 138():6-17. PubMed ID: 26499213 [TBL] [Abstract][Full Text] [Related]
16. Computational strategies for the genome-wide identification of cis-regulatory elements and transcriptional targets. Aerts S Curr Top Dev Biol; 2012; 98():121-45. PubMed ID: 22305161 [TBL] [Abstract][Full Text] [Related]
18. Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers. Farley EK; Olson KM; Zhang W; Rokhsar DS; Levine MS Proc Natl Acad Sci U S A; 2016 Jun; 113(23):6508-13. PubMed ID: 27155014 [TBL] [Abstract][Full Text] [Related]
19. Investigating chromatin accessibility during development and differentiation by ATAC-sequencing to guide the identification of cis-regulatory elements. Louise Smith E; Mok GF; Münsterberg A Biochem Soc Trans; 2022 Jun; 50(3):1167-1177. PubMed ID: 35604124 [TBL] [Abstract][Full Text] [Related]
20. Modeling transcriptional regulation using gene regulatory networks based on multi-omics data sources. Patel N; Bush WS BMC Bioinformatics; 2021 Apr; 22(1):200. PubMed ID: 33874910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]