BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33134618)

  • 1. Preliminary study on Cd accumulation characteristics in
    Li X; Yang Y
    Plant Divers; 2020 Oct; 42(5):351-355. PubMed ID: 33134618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation potential evaluation of three rhubarb species and comparative analysis of their rhizosphere characteristics in a Cd- and Pb-contaminated soil.
    Yang J; Huang Y; Zhao G; Li B; Qin X; Xu J; Li X
    Chemosphere; 2022 Jun; 296():134045. PubMed ID: 35183585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indirect organogenesis for high frequency shoot regeneration of two cultivars of Sansevieria trifasciata Prain differing in fiber production.
    García-Hernández E; Loera-Quezada MM; Morán-Velázquez DC; López MG; Chable-Vega MA; Santillán-Fernández A; Zavaleta-Mancera HA; Tang JZ; Azadi P; Ibarra-Laclette E; Alatorre-Cobos F
    Sci Rep; 2022 May; 12(1):8507. PubMed ID: 35596065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea.
    Lu RR; Hu ZH; Zhang QL; Li YQ; Lin M; Wang XL; Wu XN; Yang JT; Zhang LQ; Jing YX; Peng CL
    Ecotoxicol Environ Saf; 2020 Oct; 203():110988. PubMed ID: 32678761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of
    Soltani-Gishini MF; Azizian A; Alemzadeh A; Shabani M; Hildebrand D
    Int J Phytoremediation; 2022; 24(11):1133-1140. PubMed ID: 34870525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential of an energy crop "Conocarpus erectus" for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils.
    Tauqeer HM; Ur-Rahman M; Hussain S; Abbas F; Iqbal M
    Ecotoxicol Environ Saf; 2019 May; 173():273-284. PubMed ID: 30776560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium Uptake From Soil by Ornamental Metallophytes: A Meta-analytical Approach.
    Deepika ; Haritash AK
    Environ Manage; 2023 May; 71(5):1087-1097. PubMed ID: 36573998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizospheric Lactobacillus spp. contribute to the high Cd-accumulating characteristics of Phytolacca spp. in acidic Cd-contaminated soil.
    Li X; Li B; Liu Y; Xu J
    Environ Res; 2023 Dec; 238(Pt 2):117270. PubMed ID: 37776944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Furcraea foetida (L.)Haw. for phytoremediation of cadmium contaminated soils.
    Ramana S; Tripathi AK; Kumar A; Dey P; Saha JK; Patra AK
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):14177-14181. PubMed ID: 33491145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unrevealing the Potential of
    Kasmawati H; Mustarichie R; Halimah E; Ruslin R; Arfan A; Sida NA
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation potential of hybrid Pennisetum in cadmium-contaminated soil and its physiological responses to cadmium.
    Wu J; Qian C; Liu Z; Zhong X
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):26208-26217. PubMed ID: 36355236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of cotton for remediation of Cd-contaminated soils.
    Ramana S; Tripathi AK; Kumar A; Singh AB; Bharati K; Sahu A; Rajput PS; Saha JK; Srivastava S; Dey P; Patra AK
    Environ Monit Assess; 2021 Mar; 193(4):186. PubMed ID: 33713208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tolerance capacities of
    Zeng P; Guo Z; Xiao X; Zhou H; Gu J; Liao B
    Int J Phytoremediation; 2022; 24(6):580-589. PubMed ID: 34369831
    [No Abstract]   [Full Text] [Related]  

  • 15. Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA.
    Clabeaux BL; Navarro DA; Aga DS; Bisson MA
    Ecotoxicol Environ Saf; 2013 Dec; 98():236-43. PubMed ID: 24035462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting.
    Wei SH; Zhou QX
    Environ Sci Pollut Res Int; 2006 May; 13(3):151-5. PubMed ID: 16758704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing mixed toluene and formaldehyde pollutant removal by Zamioculcas zamiifolia combined with Sansevieria trifasciata and its CO
    Ullah H; Treesubsuntorn C; Thiravetyan P
    Environ Sci Pollut Res Int; 2021 Jan; 28(1):538-546. PubMed ID: 32812163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability assessment and accumulation by five garden flower species grown in artificially cadmium-contaminated soils.
    Lin CC; Lai HY; Chen ZS
    Int J Phytoremediation; 2010 Jul; 12(5):454-67. PubMed ID: 21166288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential use of grapevine cv Askari for heavy metal phytoremediation purposes at greenhouse scale.
    Mirzaei M; Verrelst J; Bakhtiari AR; Marofi S
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12447-12458. PubMed ID: 33079348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.