These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 33134667)
1. Mussel-Inspired Design of a Carbon Fiber-Cellulosic Polymer Interface toward Engineered Biobased Carbon Fiber-Reinforced Composites. Szabó L; Imanishi S; Hirose D; Tsukegi T; Wada N; Takahashi K ACS Omega; 2020 Oct; 5(42):27072-27082. PubMed ID: 33134667 [TBL] [Abstract][Full Text] [Related]
2. Facile Strategy of Improving Interfacial Strength of Silicone Resin Composites Through Self-Polymerized Polydopamine Followed via the Sol-Gel Growing of Silica Nanoparticles onto Carbon Fiber. Zheng Y; Wang X; Wu G Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31658675 [TBL] [Abstract][Full Text] [Related]
3. Polydopamine-induced biomimetic mineralization strategy to generate hydroxyapatite for the preparation of carbon fiber composites with excellent mechanical properties. Quan G; Wu Y; Wang P; Li W; Li D; Yan Z; Ao Y; Xiao L; Liu Y Int J Biol Macromol; 2024 Oct; 277(Pt 4):134529. PubMed ID: 39111485 [TBL] [Abstract][Full Text] [Related]
4. Mussel-Inspired Co-Deposition of Polydopamine/Silica Nanoparticles onto Carbon Fiber for Improved Interfacial Strength and Hydrothermal Aging Resistance of Composites. Cui X; Ma L; Wu G Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32210074 [TBL] [Abstract][Full Text] [Related]
5. Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating. Yi M; Sun H; Zhang H; Deng X; Cai Q; Yang X Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():742-9. PubMed ID: 26478367 [TBL] [Abstract][Full Text] [Related]
6. Short Carbon Fiber Reinforced Polymers: Utilizing Lignin to Engineer Potentially Sustainable Resource-Based Biocomposites. Szabó L; Milotskyi R; Fujie T; Tsukegi T; Wada N; Ninomiya K; Takahashi K Front Chem; 2019; 7():757. PubMed ID: 31781540 [TBL] [Abstract][Full Text] [Related]
7. Ultrafast deposition of polydopamine for high-performance fiber-reinforced high-temperature ceramic composites. Liu Y; Su C; Zu Y; Chen X; Sha J; Dai J Sci Rep; 2022 Nov; 12(1):20489. PubMed ID: 36443463 [TBL] [Abstract][Full Text] [Related]
9. Study on the Construction of Dopamine/Poly(ethyleneimine)/Aminoated Carbon Nanotube Multilayer Films on Aramid Fiber Surfaces to Improve the Mechanical Properties of Aramid Fibers/Epoxy Composites. Xu T; Tian J; An L; Jiao Y; Yin Q; Tan Y ACS Omega; 2022 Oct; 7(40):35610-35625. PubMed ID: 36249397 [TBL] [Abstract][Full Text] [Related]
10. Interfacial microstructure and mechanical properties of C Li S; Qi L; Zhang T; Ju L; Li H Micron; 2017 Oct; 101():170-176. PubMed ID: 28763734 [TBL] [Abstract][Full Text] [Related]
11. Mussel-Inspired Polydopamine as a Green, Efficient, and Stable Platform to Functionalize Bamboo Fiber with Amino-Terminated Alkyl for High Performance Poly(butylene succinate) Composites. Hong G; Cheng H; Meng Y; Lin J; Chen Z; Zhang S; Song W Polymers (Basel); 2018 Apr; 10(4):. PubMed ID: 30966496 [TBL] [Abstract][Full Text] [Related]
12. Effects of different "rigid-flexible" structures of carbon fibers surface on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites. Feng P; Song G; Li X; Xu H; Xu L; Lv D; Zhu X; Huang Y; Ma L J Colloid Interface Sci; 2021 Feb; 583():13-23. PubMed ID: 32977192 [TBL] [Abstract][Full Text] [Related]
13. Understanding the Interface Enhancement Mechanisms of CFRP with the Polydopamine-Polyetheramine Interphase at the Molecular Level. Ding Q; Gao J; Ding N; Hou N; Li N; Guo W Langmuir; 2024 May; 40(20):10571-10579. PubMed ID: 38725094 [TBL] [Abstract][Full Text] [Related]
14. Constructing a Porous Structure on the Carbon Fiber Surface for Simultaneously Strengthening and Toughening the Interface of Composites. Chen X; Hui Y; Cheng S; Wen K; Zhang J; Zhang J; Wang Y; Wang X; Li B; Shao J ACS Appl Mater Interfaces; 2023 Jan; 15(1):2437-2448. PubMed ID: 36575977 [TBL] [Abstract][Full Text] [Related]
15. Development of a "Rigid-Flexible" Structure at the Interface Through Aramid Nanofibers@MXene to Enhance Mechanical Properties of Carbon Fiber/Polyamide Composites. Zhang Z; Cao W; Yuan X; Zhao W; Zhou M; Zhu B ACS Appl Mater Interfaces; 2024 Mar; 16(12):15514-15524. PubMed ID: 38488069 [TBL] [Abstract][Full Text] [Related]
16. Strong Interface Construction of Carbon Fiber-reinforced PEEK Composites: An Efficient Method for Modifying Carbon Fiber with Crystalline PEEK. Yang Y; Wang T; Wang S; Cong X; Zhang S; Zhang M; Luan J; Wang G Macromol Rapid Commun; 2020 Dec; 41(24):e2000001. PubMed ID: 32297420 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Interfacial Properties of Carbon Fiber/Maleic Anhydride-Grafted Polypropylene Composites via Two-Step Surface Treatment: Electrochemical Oxidation and Silane Treatment. Kim DK; Han W; Kim KW; Kim BJ Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765638 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the Interfacial Shear Strength and Tensile Strength of Carbon Fibers through Chemical Grafting of Chitosan and Carbon Nanotubes. Xiao J; Li H; Lu M; Wang Y; Jiang J; Yang W; Qu S; Lu W Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177294 [TBL] [Abstract][Full Text] [Related]
19. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. Zhang X; Fan X; Yan C; Li H; Zhu Y; Li X; Yu L ACS Appl Mater Interfaces; 2012 Mar; 4(3):1543-52. PubMed ID: 22391332 [TBL] [Abstract][Full Text] [Related]
20. Improving the Interfacial Adhesion of Long Carbon Fiber-Reinforced Polyamide 6 Composites by Electrochemical Oxidation and Polyethylenimine-Carboxymethyl Cellulose Grafting. Gokce EC; Gungor M; Kilic A; Acma ME ACS Omega; 2024 Jul; 9(30):32547-32556. PubMed ID: 39100305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]