These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33134884)

  • 21. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic observation on the growth behaviors in manganese silicide/silicon nanowire heterostructures.
    Hsieh YH; Chiu CH; Huang CW; Chen JY; Lin WJ; Wu WW
    Nanoscale; 2015 Feb; 7(5):1776-81. PubMed ID: 25519809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Composition-dependent interfacial abruptness in Au-catalyzed Si(1-x)Ge(x)/Si/Si(1-x)Ge(x) nanowire heterostructures.
    Periwal P; Sibirev NV; Patriarche G; Salem B; Bassani F; Dubrovskii VG; Baron T
    Nano Lett; 2014 Sep; 14(9):5140-7. PubMed ID: 25118977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth.
    Hofmann S; Sharma R; Wirth CT; Cervantes-Sodi F; Ducati C; Kasama T; Dunin-Borkowski RE; Drucker J; Bennett P; Robertson J
    Nat Mater; 2008 May; 7(5):372-5. PubMed ID: 18327262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures.
    Lin YC; Kim D; Li Z; Nguyen BM; Li N; Zhang S; Yoo J
    Nanoscale; 2017 Jan; 9(3):1213-1220. PubMed ID: 28050613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth of heterojunctions in Si-Ge alloy nanowires by altering AuGeSi eutectic composition using an approach based on thermal oxidation.
    Sun YT; Lee HY; Wang IT; Wen CY
    Nanotechnology; 2019 Jul; 30(28):284002. PubMed ID: 30913543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures.
    Wu Y; Xiang J; Yang C; Lu W; Lieber CM
    Nature; 2004 Jul; 430(6995):61-5. PubMed ID: 15229596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties.
    Chiu CH; Huang CW; Chen JY; Huang YT; Hu JC; Chen LT; Hsin CL; Wu WW
    Nanoscale; 2013 Jun; 5(11):5086-92. PubMed ID: 23640615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CdxPb(1-x)S alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths.
    Nichols PL; Liu Z; Yin L; Turkdogan S; Fan F; Ning CZ
    Nano Lett; 2015 Feb; 15(2):909-16. PubMed ID: 25594578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of High Temperature and Thermal Cycle of 4043 Al Alloy Manufactured through Continuous Casting Direct Rolling.
    Huang BC; Hung FY
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlling the growth of Si/Ge nanowires and heterojunctions using silver-gold alloy catalysts.
    Chou YC; Wen CY; Reuter MC; Su D; Stach EA; Ross FM
    ACS Nano; 2012 Jul; 6(7):6407-15. PubMed ID: 22708581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticle Stability in Axial InAs-InP Nanowire Heterostructures with Atomically Sharp Interfaces.
    Zannier V; Rossi F; Dubrovskii VG; Ercolani D; Battiato S; Sorba L
    Nano Lett; 2018 Jan; 18(1):167-174. PubMed ID: 29186660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Observing Solid-State Formation of Oriented Porous Functional Oxide Nanowire Heterostructures by in Situ TEM.
    Ho JH; Ting YH; Chen JY; Huang CW; Tsai TC; Lin TY; Huang CY; Wu WW
    Nano Lett; 2018 Sep; 18(9):6064-6070. PubMed ID: 30130112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the Electron Beam and the Choice of Heating Membrane on the Evolution of Si Nanowires' Morphology in In Situ TEM.
    Shen Y; Zhao X; Gong R; Ngo E; Maurice JL; Roca I Cabarrocas P; Chen W
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diffusion in Si(x)Ge(1-x)/Si nanowire heterostructures.
    Zhang X; Kulik J; Dickey EC
    J Nanosci Nanotechnol; 2007 Feb; 7(2):717-20. PubMed ID: 17450821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying.
    Perea DE; Li N; Dickerson RM; Misra A; Picraux ST
    Nano Lett; 2011 Aug; 11(8):3117-22. PubMed ID: 21696182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled Formation of Radial Core-Shell Si/Metal Silicide Crystalline Heterostructures.
    Kosloff A; Granot E; Barkay Z; Patolsky F
    Nano Lett; 2018 Jan; 18(1):70-80. PubMed ID: 29198117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large-Scale Monolithic Fabrication of III-V Vertical Nanowires on a Standard Si(100) Microelectronic Substrate.
    Lecestre A; Martin M; Cristiano F; Baron T; Larrieu G
    ACS Omega; 2022 Feb; 7(7):5836-5843. PubMed ID: 35224344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.