These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33135053)

  • 1. CATH functional families predict functional sites in proteins.
    Das S; Scholes HM; Sen N; Orengo C
    Bioinformatics; 2021 May; 37(8):1099-1106. PubMed ID: 33135053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional classification of CATH superfamilies: a domain-based approach for protein function annotation.
    Das S; Lee D; Sillitoe I; Dawson NL; Lees JG; Orengo CA
    Bioinformatics; 2015 Nov; 31(21):3460-7. PubMed ID: 26139634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustering FunFams using sequence embeddings improves EC purity.
    Littmann M; Bordin N; Heinzinger M; Schütze K; Dallago C; Orengo C; Rost B
    Bioinformatics; 2021 Oct; 37(20):3449-3455. PubMed ID: 33978744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CATH: increased structural coverage of functional space.
    Sillitoe I; Bordin N; Dawson N; Waman VP; Ashford P; Scholes HM; Pang CSM; Woodridge L; Rauer C; Sen N; Abbasian M; Le Cornu S; Lam SD; Berka K; Varekova IH; Svobodova R; Lees J; Orengo CA
    Nucleic Acids Res; 2021 Jan; 49(D1):D266-D273. PubMed ID: 33237325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures.
    Sillitoe I; Cuff AL; Dessailly BH; Dawson NL; Furnham N; Lee D; Lees JG; Lewis TE; Studer RA; Rentzsch R; Yeats C; Thornton JM; Orengo CA
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D490-8. PubMed ID: 23203873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary couplings and sequence variation effect predict protein binding sites.
    Schelling M; Hopf TA; Rost B
    Proteins; 2018 Oct; 86(10):1064-1074. PubMed ID: 30020551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FunFam protein families improve residue level molecular function prediction.
    Scheibenreif L; Littmann M; Orengo C; Rost B
    BMC Bioinformatics; 2019 Jul; 20(1):400. PubMed ID: 31319797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling dynamics and evolutionary information with structure to identify protein regulatory and functional binding sites.
    Mishra SK; Kandoi G; Jernigan RL
    Proteins; 2019 Oct; 87(10):850-868. PubMed ID: 31141211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CATHe: detection of remote homologues for CATH superfamilies using embeddings from protein language models.
    Nallapareddy V; Bordin N; Sillitoe I; Heinzinger M; Littmann M; Waman VP; Sen N; Rost B; Orengo C
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36648327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BIPSPI: a method for the prediction of partner-specific protein-protein interfaces.
    Sanchez-Garcia R; Sorzano COS; Carazo JM; Segura J
    Bioinformatics; 2019 Feb; 35(3):470-477. PubMed ID: 30020406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PIPENN: protein interface prediction from sequence with an ensemble of neural nets.
    Stringer B; de Ferrante H; Abeln S; Heringa J; Feenstra KA; Haydarlou R
    Bioinformatics; 2022 Apr; 38(8):2111-2118. PubMed ID: 35150231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational approaches to predict protein functional families and functional sites.
    Rauer C; Sen N; Waman VP; Abbasian M; Orengo CA
    Curr Opin Struct Biol; 2021 Oct; 70():108-122. PubMed ID: 34225010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Develop machine learning-based regression predictive models for engineering protein solubility.
    Han X; Wang X; Zhou K
    Bioinformatics; 2019 Nov; 35(22):4640-4646. PubMed ID: 31038685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KinFams: De-Novo Classification of Protein Kinases Using CATH Functional Units.
    Adeyelu T; Bordin N; Waman VP; Sadlej M; Sillitoe I; Moya-Garcia AA; Orengo CA
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PST-PRNA: prediction of RNA-binding sites using protein surface topography and deep learning.
    Li P; Liu ZP
    Bioinformatics; 2022 Apr; 38(8):2162-2168. PubMed ID: 35150250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards region-specific propagation of protein functions.
    Koo DCE; Bonneau R
    Bioinformatics; 2019 May; 35(10):1737-1744. PubMed ID: 30304483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence alignment using machine learning for accurate template-based protein structure prediction.
    Makigaki S; Ishida T
    Bioinformatics; 2020 Jan; 36(1):104-111. PubMed ID: 31197318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LYRUS: a machine learning model for predicting the pathogenicity of missense variants.
    Lai J; Yang J; Gamsiz Uzun ED; Rubenstein BM; Sarkar IN
    Bioinform Adv; 2022; 2(1):vbab045. PubMed ID: 35036922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.