These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33135053)

  • 21. Automatic recognition of ligands in electron density by machine learning.
    Kowiel M; Brzezinski D; Porebski PJ; Shabalin IG; Jaskolski M; Minor W
    Bioinformatics; 2019 Feb; 35(3):452-461. PubMed ID: 30016407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transfer learning via multi-scale convolutional neural layers for human-virus protein-protein interaction prediction.
    Yang X; Yang S; Lian X; Wuchty S; Zhang Z
    Bioinformatics; 2021 Dec; 37(24):4771-4778. PubMed ID: 34273146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DeepMirTar: a deep-learning approach for predicting human miRNA targets.
    Wen M; Cong P; Zhang Z; Lu H; Li T
    Bioinformatics; 2018 Nov; 34(22):3781-3787. PubMed ID: 29868708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.
    Wang D; Zeng S; Xu C; Qiu W; Liang Y; Joshi T; Xu D
    Bioinformatics; 2017 Dec; 33(24):3909-3916. PubMed ID: 29036382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DeepCoil-a fast and accurate prediction of coiled-coil domains in protein sequences.
    Ludwiczak J; Winski A; Szczepaniak K; Alva V; Dunin-Horkawicz S
    Bioinformatics; 2019 Aug; 35(16):2790-2795. PubMed ID: 30601942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein-protein interaction information.
    Yang H; Wang M; Liu X; Zhao XM; Li A
    Bioinformatics; 2021 Dec; 37(24):4668-4676. PubMed ID: 34320631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extended connectivity interaction features: improving binding affinity prediction through chemical description.
    Sánchez-Cruz N; Medina-Franco JL; Mestres J; Barril X
    Bioinformatics; 2021 Jun; 37(10):1376-1382. PubMed ID: 33226061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning.
    Wei L; Ye X; Sakurai T; Mu Z; Wei L
    Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SIP: A computational prediction of S-Adenosyl methionine (SAM) interacting proteins and their interaction sites through primary structures.
    Abbasi WA; Ajaz SA; Arshad K; Liaqat S; Andleeb S; Bibi M; Abbas SA
    Comput Biol Chem; 2022 Jun; 98():107662. PubMed ID: 35288360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved recognition of splice sites in
    Meher PK; Satpathy S
    3 Biotech; 2021 Nov; 11(11):484. PubMed ID: 34790508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NegGOA: negative GO annotations selection using ontology structure.
    Fu G; Wang J; Yang B; Yu G
    Bioinformatics; 2016 Oct; 32(19):2996-3004. PubMed ID: 27318205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The CATH extended protein-family database: providing structural annotations for genome sequences.
    Pearl FM; Lee D; Bray JE; Buchan DW; Shepherd AJ; Orengo CA
    Protein Sci; 2002 Feb; 11(2):233-44. PubMed ID: 11790833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ConDo: protein domain boundary prediction using coevolutionary information.
    Hong SH; Joo K; Lee J
    Bioinformatics; 2019 Jul; 35(14):2411-2417. PubMed ID: 30500873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A CATH domain functional family based approach to identify putative cancer driver genes and driver mutations.
    Ashford P; Pang CSM; Moya-García AA; Adeyelu T; Orengo CA
    Sci Rep; 2019 Jan; 9(1):263. PubMed ID: 30670742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EvoRator: Prediction of Residue-level Evolutionary Rates from Protein Structures Using Machine Learning.
    Nagar N; Ben Tal N; Pupko T
    J Mol Biol; 2022 Jun; 434(11):167538. PubMed ID: 35662466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein-protein interaction site prediction through combining local and global features with deep neural networks.
    Zeng M; Zhang F; Wu FX; Li Y; Wang J; Li M
    Bioinformatics; 2020 Feb; 36(4):1114-1120. PubMed ID: 31593229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DeepGOZero: improving protein function prediction from sequence and zero-shot learning based on ontology axioms.
    Kulmanov M; Hoehndorf R
    Bioinformatics; 2022 Jun; 38(Suppl 1):i238-i245. PubMed ID: 35758802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation.
    Li Y; Wang Z; You ZH; Li LP; Hu X
    Comput Math Methods Med; 2022; 2022():7191684. PubMed ID: 35242211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. iDNA-ABT: advanced deep learning model for detecting DNA methylation with adaptive features and transductive information maximization.
    Yu Y; He W; Jin J; Xiao G; Cui L; Zeng R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4603-4610. PubMed ID: 34601568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.