These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33135311)

  • 1. Alternative systems for misfolded protein clearance: life beyond the proteasome.
    Johnston HE; Samant RS
    FEBS J; 2021 Aug; 288(15):4464-4487. PubMed ID: 33135311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control.
    Samant RS; Livingston CM; Sontag EM; Frydman J
    Nature; 2018 Nov; 563(7731):407-411. PubMed ID: 30429547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Releasing the Lockdown: An Emerging Role for the Ubiquitin-Proteasome System in the Breakdown of Transient Protein Inclusions.
    Reiss Y; Gur E; Ravid T
    Biomolecules; 2020 Aug; 10(8):. PubMed ID: 32784966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear Ubiquitin-Proteasome Pathways in Proteostasis Maintenance.
    Franić D; Zubčić K; Boban M
    Biomolecules; 2021 Jan; 11(1):. PubMed ID: 33406777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome.
    Abildgaard AB; Gersing SK; Larsen-Ledet S; Nielsen SV; Stein A; Lindorff-Larsen K; Hartmann-Petersen R
    Biomolecules; 2020 Aug; 10(8):. PubMed ID: 32759676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy.
    Szeto J; Kaniuk NA; Canadien V; Nisman R; Mizushima N; Yoshimori T; Bazett-Jones DP; Brumell JH
    Autophagy; 2006; 2(3):189-99. PubMed ID: 16874109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaperone-mediated 26S proteasome remodeling facilitates free K63 ubiquitin chain production and aggresome clearance.
    Nanduri P; Hao R; Fitzpatrick T; Yao TP
    J Biol Chem; 2015 Apr; 290(15):9455-64. PubMed ID: 25713068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitin receptors and protein quality control.
    Wang X; Terpstra EJ
    J Mol Cell Cardiol; 2013 Feb; 55():73-84. PubMed ID: 23046644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death.
    Cristofani R; Rusmini P; Galbiati M; Cicardi ME; Ferrari V; Tedesco B; Casarotto E; Chierichetti M; Messi E; Piccolella M; Carra S; Crippa V; Poletti A
    Front Neurosci; 2019; 13():796. PubMed ID: 31427919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis.
    Chua BA; Lennan CJ; Sunshine MJ; Dreifke D; Chawla A; Bennett EJ; Signer RAJ
    Cell Stem Cell; 2023 Apr; 30(4):460-472.e6. PubMed ID: 36948186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases.
    Hyttinen JM; Amadio M; Viiri J; Pascale A; Salminen A; Kaarniranta K
    Ageing Res Rev; 2014 Nov; 18():16-28. PubMed ID: 25062811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity.
    Liu W; Duan X; Fang X; Shang W; Tong C
    Autophagy; 2018; 14(8):1293-1309. PubMed ID: 29909722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy.
    Zientara-Rytter K; Subramani S
    Cells; 2019 Jan; 8(1):. PubMed ID: 30634694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein quality control by the proteasome and autophagy: A regulatory role of ubiquitin and liquid-liquid phase separation.
    Lei L; Wu Z; Winklhofer KF
    Matrix Biol; 2021 Jun; 100-101():9-22. PubMed ID: 33259919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligomerization of Selective Autophagy Receptors for the Targeting and Degradation of Protein Aggregates.
    Chen W; Shen T; Wang L; Lu K
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.
    Ciechanover A; Kwon YT
    Exp Mol Med; 2015 Mar; 47(3):e147. PubMed ID: 25766616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments.
    Ben-Gedalya T; Lyakhovetsky R; Yedidia Y; Bejerano-Sagie M; Kogan NM; Karpuj MV; Kaganovich D; Cohen E
    J Cell Sci; 2011 Jun; 124(Pt 11):1891-902. PubMed ID: 21558416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lanosterol modulates proteostasis via dissolving cytosolic sequestosomes/aggresome-like induced structures.
    Hu LD; Wang J; Chen XJ; Yan YB
    Biochim Biophys Acta Mol Cell Res; 2020 Feb; 1867(2):118617. PubMed ID: 31785334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosolic splice isoform of Hsp70 nucleotide exchange factor Fes1 is required for the degradation of misfolded proteins in yeast.
    Gowda NK; Kaimal JM; Masser AE; Kang W; Friedländer MR; Andréasson C
    Mol Biol Cell; 2016 Apr; 27(8):1210-9. PubMed ID: 26912797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging role for autophagy in the removal of aggresomes in Schwann cells.
    Fortun J; Dunn WA; Joy S; Li J; Notterpek L
    J Neurosci; 2003 Nov; 23(33):10672-80. PubMed ID: 14627652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.