BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33135524)

  • 41. The Feasibility of a Smart Surgical Probe for Verification of IRE Treatments Using Electrical Impedance Spectroscopy.
    Bonakdar M; Latouche EL; Mahajan RL; Davalos RV
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2674-84. PubMed ID: 26057529
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methodology and feasibility of a 3D printed assistive technology intervention.
    Schwartz JK; Fermin A; Fine K; Iglesias N; Pivarnik D; Struck S; Varela N; Janes WE
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):141-147. PubMed ID: 30663439
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards 3D printed multifunctional immobilization for proton therapy: Initial materials characterization.
    Michiels S; D'Hollander A; Lammens N; Kersemans M; Zhang G; Denis JM; Poels K; Sterpin E; Nuyts S; Haustermans K; Depuydt T
    Med Phys; 2016 Oct; 43(10):5392. PubMed ID: 27782703
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dielectric properties of 3D-printed materials for anatomy specific 3D-printed MRI coils.
    Behzadnezhad B; Collick BD; Behdad N; McMillan AB
    J Magn Reson; 2018 Apr; 289():113-121. PubMed ID: 29500942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Course in oral diagnosis. White lesions of the oral mucosa. 3d lecture].
    Tommasi AF
    Ars Curandi Odontol; 1974; 1(2):45-6, 48, 50-3. PubMed ID: 4535565
    [No Abstract]   [Full Text] [Related]  

  • 46. Development of stable and reproducible biosensors based on electrochemical impedance spectroscopy: three-electrode versus two-electrode setup.
    Ianeselli L; Grenci G; Callegari C; Tormen M; Casalis L
    Biosens Bioelectron; 2014 May; 55():1-6. PubMed ID: 24355458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrode-Electrolyte Interface Modeling and Impedance Characterizing of Tripolar Concentric Ring Electrode.
    Nasrollaholhosseini SH; Mercier J; Fischer G; Besio WG
    IEEE Trans Biomed Eng; 2019 Oct; 66(10):2897-2905. PubMed ID: 30735984
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes.
    Bin Hamzah HH; Keattch O; Covill D; Patel BA
    Sci Rep; 2018 Jun; 8(1):9135. PubMed ID: 29904165
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA.
    Lin CH; Lin YM; Lai YL; Lee SY
    J Prosthet Dent; 2020 Feb; 123(2):349-354. PubMed ID: 31202550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design, Construction and Validation of an Electrical Impedance Probe with Contact Force and Temperature Sensors Suitable for in-vivo Measurements.
    Ruiz-Vargas A; Ivorra A; Arkwright JW
    Sci Rep; 2018 Oct; 8(1):14818. PubMed ID: 30287842
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Measurement of corneal endothelial impedance with non-invasive external electrodes--a theoretical study.
    Mandel Y; Laufer S; Rubinsky B
    Med Eng Phys; 2012 Mar; 34(2):195-201. PubMed ID: 21835678
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D-printed reduced graphene oxide/polylactic acid electrodes: A new prototyped platform for sensing and biosensing applications.
    Silva VAOP; Fernandes-Junior WS; Rocha DP; Stefano JS; Munoz RAA; Bonacin JA; Janegitz BC
    Biosens Bioelectron; 2020 Dec; 170():112684. PubMed ID: 33049481
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-Dimensional (3D) cell culture monitoring: Opportunities and challenges for impedance spectroscopy.
    De León SE; Pupovac A; McArthur SL
    Biotechnol Bioeng; 2020 Apr; 117(4):1230-1240. PubMed ID: 31956986
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A probe for organ impedance measurement.
    Paulson KS; Pidcock MK; McLeod CN
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1838-44. PubMed ID: 15490831
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Raman spectroscopy can discriminate between normal, dysplastic and cancerous oral mucosa: a tissue-engineering approach.
    Mian SA; Yorucu C; Ullah MS; Rehman IU; Colley HE
    J Tissue Eng Regen Med; 2017 Nov; 11(11):3253-3262. PubMed ID: 27860386
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A prospective parallel design study testing non-inferiority of customized oral stents made using 3D printing or manually fabricated methods.
    Zaid M; Koay EJ; Bajaj N; Mathew R; Xiao L; Agrawal A; Fernandes P; Burrows H; Roach MA; Wilke CT; Chung C; Fuller CD; Phan J; Gunn GB; Morrison WH; Garden AS; Frank SJ; Rosenthal DI; Andersen M; Otun A; Chambers MS
    Oral Oncol; 2020 Jul; 106():104665. PubMed ID: 32298994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Femtomolar detection of cardiac troponin I using a novel label-free and reagent-free dendrimer enhanced impedimetric immunosensor.
    Akter R; Jeong B; Lee YM; Choi JS; Rahman MA
    Biosens Bioelectron; 2017 May; 91():637-643. PubMed ID: 28107745
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel three-dimensional printed guiding device for electrode implantation of sacral neuromodulation.
    Cui Z; Wang Z; Ye G; Zhang C; Wu G; Lv J
    Colorectal Dis; 2018 Jan; 20(1):O26-O29. PubMed ID: 29110390
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and implementation of a novel superfusion system for ex vivo characterization of neural tissue by dielectric spectroscopy (DS).
    Dobiszewski KF; Shaker MR; Deek MP; Prodan C; Hill AA
    Physiol Meas; 2011 Feb; 32(2):195-205. PubMed ID: 21178248
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development and Evaluation of 3D-Printed Cardiovascular Phantoms for Interventional Planning and Training.
    Grab M; Hopfner C; Gesenhues A; König F; Haas NA; Hagl C; Curta A; Thierfelder N
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33522517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.