These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 33135599)

  • 21. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury.
    Novikova LN; Kolar MK; Kingham PJ; Ullrich A; Oberhoffner S; Renardy M; Doser M; Müller E; Wiberg M; Novikov LN
    Acta Biomater; 2018 Jan; 66():177-191. PubMed ID: 29174588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent therapeutic approaches for spinal cord injury.
    Raspa A; Pugliese R; Maleki M; Gelain F
    Biotechnol Bioeng; 2016 Feb; 113(2):253-9. PubMed ID: 26134352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systematic Evaluation of Spinal Cord Injury Animal Models in the Field of Biomaterials.
    Verstappen K; Aquarius R; Klymov A; Wever KE; Damveld L; Leeuwenburgh SCG; Bartels RHMA; Hooijmans CR; Walboomers XF
    Tissue Eng Part B Rev; 2022 Dec; 28(6):1169-1179. PubMed ID: 34915758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuroimaging in traumatic spinal cord injury: an evidence-based review for clinical practice and research.
    Lammertse D; Dungan D; Dreisbach J; Falci S; Flanders A; Marino R; Schwartz E;
    J Spinal Cord Med; 2007; 30(3):205-14. PubMed ID: 17684886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment.
    Xiang W; Cao H; Tao H; Jin L; Luo Y; Tao F; Jiang T
    Int J Biol Macromol; 2023 Mar; 230():123447. PubMed ID: 36708903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomaterials for revascularization and immunomodulation after spinal cord injury.
    Haggerty AE; Maldonado-Lasunción I; Oudega M
    Biomed Mater; 2018 Apr; 13(4):044105. PubMed ID: 29359704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and Application of Three-Dimensional Bioprinting Scaffold in the Repair of Spinal Cord Injury.
    Lu D; Yang Y; Zhang P; Ma Z; Li W; Song Y; Feng H; Yu W; Ren F; Li T; Zeng H; Wang J
    Tissue Eng Regen Med; 2022 Dec; 19(6):1113-1127. PubMed ID: 35767151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lentiviral Vectors Delivered with Biomaterials as Therapeutics for Spinal Cord Injury.
    Shortiss C; Howard L; McMahon SS
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in Management of Spinal Cord Injury Using Stem Cell-derived Extracellular Vesicles: A Review Study.
    Afsartala Z; Hadjighassem M; Shirian S; Ebrahimi-Barough S; Gholami L; Hussain MF; Yaghoobi M; Ai J
    Basic Clin Neurosci; 2023; 14(4):443-451. PubMed ID: 38050575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomaterials and Magnetic Stem Cell Delivery in the Treatment of Spinal Cord Injury.
    Kubinová Š
    Neurochem Res; 2020 Jan; 45(1):171-179. PubMed ID: 31028504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies.
    Shen Y; Cao X; Lu M; Gu H; Li M; Posner DA
    Smart Med; 2022 Dec; 1(1):e20220017. PubMed ID: 39188731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel Strategies for Spinal Cord Regeneration.
    Costăchescu B; Niculescu AG; Dabija MG; Teleanu RI; Grumezescu AM; Eva L
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymer scaffolds facilitate spinal cord injury repair.
    Zhang Q; Shi B; Ding J; Yan L; Thawani JP; Fu C; Chen X
    Acta Biomater; 2019 Apr; 88():57-77. PubMed ID: 30710714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in molecular therapies for targeting pathophysiology in spinal cord injury.
    Kim HN; McCrea MR; Li S
    Expert Opin Ther Targets; 2023 Mar; 27(3):171-187. PubMed ID: 37017093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Research progress and prospects of tissue engineering scaffolds for spinal cord injury repair and protection.
    Ma Z; Lu Y; Yang Y; Wang J; Kang X
    Regen Med; 2019 Sep; 14(9):887-898. PubMed ID: 31436130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation.
    Li X; Liu D; Xiao Z; Zhao Y; Han S; Chen B; Dai J
    Biomaterials; 2019 Mar; 197():20-31. PubMed ID: 30639547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury.
    Kabu S; Gao Y; Kwon BK; Labhasetwar V
    J Control Release; 2015 Dec; 219():141-154. PubMed ID: 26343846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging approaches of neural regeneration using physical stimulations solely or coupled with smart piezoelectric nano-biomaterials.
    De I; Sharma P; Singh M
    Eur J Pharm Biopharm; 2022 Apr; 173():73-91. PubMed ID: 35227856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury.
    Suzuki H; Imajo Y; Funaba M; Ikeda H; Nishida N; Sakai T
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury.
    Nielson JL; Haefeli J; Salegio EA; Liu AW; Guandique CF; Stück ED; Hawbecker S; Moseanko R; Strand SC; Zdunowski S; Brock JH; Roy RR; Rosenzweig ES; Nout-Lomas YS; Courtine G; Havton LA; Steward O; Reggie Edgerton V; Tuszynski MH; Beattie MS; Bresnahan JC; Ferguson AR
    Brain Res; 2015 Sep; 1619():124-38. PubMed ID: 25451131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.