BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 33135881)

  • 1. Enhanced Osteogenic Potential of Phosphonated-Siloxane Hydrogel Scaffolds.
    Frassica MT; Jones SK; Suriboot J; Arabiyat AS; Ramirez EM; Culibrk RA; Hahn MS; Grunlan MA
    Biomacromolecules; 2020 Dec; 21(12):5189-5199. PubMed ID: 33135881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration.
    Bailey BM; Nail LN; Grunlan MA
    Acta Biomater; 2013 Sep; 9(9):8254-61. PubMed ID: 23707502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PDMS(star)-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds.
    Bailey BM; Fei R; Munoz-Pinto D; Hahn MS; Grunlan MA
    Acta Biomater; 2012 Dec; 8(12):4324-33. PubMed ID: 22842033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive Siloxane-Containing Shape-Memory Polymer (SMP) Scaffolds with Tunable Degradation Rates.
    Beltran FO; Houk CJ; Grunlan MA
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1631-1639. PubMed ID: 33667062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)().
    Bailey BM; Hui V; Fei R; Grunlan MA
    J Mater Chem; 2011 Jan; 21(46):18776-18782. PubMed ID: 22956857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-cross-linked PDMSstar-PEG hydrogels: synthesis, characterization, and potential application for tissue engineering scaffolds.
    Hou Y; Schoener CA; Regan KR; Munoz-Pinto D; Hahn MS; Grunlan MA
    Biomacromolecules; 2010 Mar; 11(3):648-56. PubMed ID: 20146518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering.
    Nair BP; Gangadharan D; Mohan N; Sumathi B; Nair PD
    Mater Sci Eng C Mater Biol Appl; 2015; 52():333-42. PubMed ID: 25953575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteogenic potential of poly(ethylene glycol)-poly(dimethylsiloxane) hybrid hydrogels.
    Munoz-Pinto DJ; Jimenez-Vergara AC; Hou Y; Hayenga HN; Rivas A; Grunlan M; Hahn MS
    Tissue Eng Part A; 2012 Aug; 18(15-16):1710-9. PubMed ID: 22519299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro cytotoxicity of unsaturated oligo[poly(ethylene glycol) fumarate] macromers and their cross-linked hydrogels.
    Shin H; Temenoff JS; Mikos AG
    Biomacromolecules; 2003; 4(3):552-60. PubMed ID: 12741769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular responses to degradable cyclic acetal modified PEG hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    J Biomed Mater Res A; 2009 Sep; 90(3):863-73. PubMed ID: 18615467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds.
    Müller BM; Loth R; Hoffmeister PG; Zühl F; Kalbitzer L; Hacker MC; Schulz-Siegmund M
    Acta Biomater; 2017 Mar; 51():148-160. PubMed ID: 28069495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering].
    Tu Y; Wu T; Ye A; Xu J; Guo F; Cheng X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1499-505. PubMed ID: 24640374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells.
    Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly adjustable biomaterial networks from three-armed biodegradable macromers.
    Loth R; Loth T; Schwabe K; Bernhardt R; Schulz-Siegmund M; Hacker MC
    Acta Biomater; 2015 Oct; 26():82-96. PubMed ID: 26277378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering.
    Martens PJ; Bryant SJ; Anseth KS
    Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels.
    Moeinzadeh S; Barati D; He X; Jabbari E
    Biomacromolecules; 2012 Jul; 13(7):2073-86. PubMed ID: 22642902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.