These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 33135881)

  • 21. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
    Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W
    J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host.
    Day JR; David A; Kim J; Farkash EA; Cascalho M; Milašinović N; Shikanov A
    Acta Biomater; 2018 Feb; 67():42-52. PubMed ID: 29242160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple hydrogel scaffold with injectability, adhesivity and osteogenic activity for bone regeneration.
    Zhang H; Cai Q; Zhu Y; Zhu W
    Biomater Sci; 2021 Feb; 9(3):960-972. PubMed ID: 33559657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering.
    Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A
    J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional pattering of poly (ethylene Glycol) hydrogels through surface-initiated photopolymerization.
    Papavasiliou G; Songprawat P; Pérez-Luna V; Hammes E; Morris M; Chiu YC; Brey E
    Tissue Eng Part C Methods; 2008 Jun; 14(2):129-40. PubMed ID: 18471086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds.
    Alipour M; Aghazadeh M; Akbarzadeh A; Vafajoo Z; Aghazadeh Z; Raeisdasteh Hokmabad V
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3431-3437. PubMed ID: 31411067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds.
    Kim J; Lee KW; Hefferan TE; Currier BL; Yaszemski MJ; Lu L
    Biomacromolecules; 2008 Jan; 9(1):149-57. PubMed ID: 18072747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery.
    Lee YP; Liu HY; Lin PC; Lee YH; Yu LR; Hsieh CC; Shih PJ; Shih WP; Wang IJ; Yen JY; Dai CA
    Colloids Surf B Biointerfaces; 2019 Mar; 175():26-35. PubMed ID: 30513471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Macroporous hydrogels upregulate osteogenic signal expression and promote bone regeneration.
    Betz MW; Yeatts AB; Richbourg WJ; Caccamese JF; Coletti DP; Falco EE; Fisher JP
    Biomacromolecules; 2010 May; 11(5):1160-8. PubMed ID: 20345129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Free radical polymerization of poly(ethylene glycol) diacrylate macromers: impact of macromer hydrophobicity and initiator chemistry on polymerization efficiency.
    Dai X; Chen X; Yang L; Foster S; Coury AJ; Jozefiak TH
    Acta Biomater; 2011 May; 7(5):1965-72. PubMed ID: 21232638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold.
    Tan F; Xu X; Deng T; Yin M; Zhang X; Wang J
    Biomed Mater; 2012 Oct; 7(5):055009. PubMed ID: 22945346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery.
    Oss-Ronen L; Seliktar D
    Acta Biomater; 2011 Jan; 7(1):163-70. PubMed ID: 20643230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arginine based poly (ester amide)/ hyaluronic acid hybrid hydrogels for bone tissue Engineering.
    Zhou Y; Gu Z; Liu J; Huang K; Liu G; Wu J
    Carbohydr Polym; 2020 Feb; 230():115640. PubMed ID: 31887895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PLGA/PEG-hydrogel composite scaffolds with controllable mechanical properties.
    Rahman CV; Kuhn G; White LJ; Kirby GT; Varghese OP; McLaren JS; Cox HC; Rose FR; Müller R; Hilborn J; Shakesheff KM
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):648-55. PubMed ID: 23359448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional, photocrosslinked hydrogel constructs: Effect of cell seeding density and material stiffness.
    Sun AX; Lin H; Fritch MR; Shen H; Alexander PG; DeHart M; Tuan RS
    Acta Biomater; 2017 Aug; 58():302-311. PubMed ID: 28611002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of macroporous cement scaffolds using PEG particles: In vitro evaluation with induced pluripotent stem cell-derived mesenchymal progenitors.
    Sladkova M; Palmer M; Öhman C; Alhaddad RJ; Esmael A; Engqvist H; de Peppo GM
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():640-52. PubMed ID: 27612757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning.
    Xu F; Gough I; Dorogin J; Sheardown H; Hoare T
    Acta Biomater; 2020 Mar; 104():135-146. PubMed ID: 31904560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels.
    Whitely M; Cereceres S; Dhavalikar P; Salhadar K; Wilems T; Smith B; Mikos A; Cosgriff-Hernandez E
    Biomaterials; 2018 Dec; 185():194-204. PubMed ID: 30245387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.