These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
453 related articles for article (PubMed ID: 33136182)
1. CT-based radiomics for differentiating renal tumours: a systematic review. Bhandari A; Ibrahim M; Sharma C; Liong R; Gustafson S; Prior M Abdom Radiol (NY); 2021 May; 46(5):2052-2063. PubMed ID: 33136182 [TBL] [Abstract][Full Text] [Related]
2. Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat. Yang R; Wu J; Sun L; Lai S; Xu Y; Liu X; Ma Y; Zhen X Eur Radiol; 2020 Feb; 30(2):1254-1263. PubMed ID: 31468159 [TBL] [Abstract][Full Text] [Related]
3. CT radiomics for differentiating oncocytoma from renal cell carcinomas: Systematic review and meta-analysis. Dehghani Firouzabadi F; Gopal N; Homayounieh F; Anari PY; Li X; Ball MW; Jones EC; Samimi S; Turkbey E; Malayeri AA Clin Imaging; 2023 Feb; 94():9-17. PubMed ID: 36459898 [TBL] [Abstract][Full Text] [Related]
4. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Nazari M; Shiri I; Hajianfar G; Oveisi N; Abdollahi H; Deevband MR; Oveisi M; Zaidi H Radiol Med; 2020 Aug; 125(8):754-762. PubMed ID: 32193870 [TBL] [Abstract][Full Text] [Related]
5. Preoperative prediction of renal fibrous capsule invasion in clear cell renal cell carcinoma using CT-based radiomics model. Zhang Y; Zhao J; Li Z; Yang M; Ye Z Br J Radiol; 2024 Sep; 97(1161):1557-1567. PubMed ID: 38897659 [TBL] [Abstract][Full Text] [Related]
6. Fuhrman nuclear grade prediction of clear cell renal cell carcinoma: influence of volume of interest delineation strategies on machine learning-based dynamic enhanced CT radiomics analysis. Luo S; Wei R; Lu S; Lai S; Wu J; Wu Z; Pang X; Wei X; Jiang X; Zhen X; Yang R Eur Radiol; 2022 Apr; 32(4):2340-2350. PubMed ID: 34636962 [TBL] [Abstract][Full Text] [Related]
7. Fat poor angiomyolipoma differentiation from renal cell carcinoma at 320-slice dynamic volume CT perfusion. Chen C; Kang Q; Xu B; Shi Z; Guo H; Wei Q; Lu Y; Wu X Abdom Radiol (NY); 2018 May; 43(5):1223-1230. PubMed ID: 28828638 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the Efficacy of Radiomics-Based Prediction of Fuhrman Pathological Grading in Renal Clear Cell Carcinoma Using Multilayer Spiral CT Imaging. Liu B; Liu A; Wu Y; Qi Y; Peng Y Arch Esp Urol; 2024 Jul; 77(6):674-680. PubMed ID: 39104236 [TBL] [Abstract][Full Text] [Related]
9. Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma-a systematic review and meta-analysis. Ursprung S; Beer L; Bruining A; Woitek R; Stewart GD; Gallagher FA; Sala E Eur Radiol; 2020 Jun; 30(6):3558-3566. PubMed ID: 32060715 [TBL] [Abstract][Full Text] [Related]
10. Radiomics and machine learning for renal tumor subtype assessment using multiphase computed tomography in a multicenter setting. Uhlig A; Uhlig J; Leha A; Biggemann L; Bachanek S; Stöckle M; Reichert M; Lotz J; Zeuschner P; Maßmann A Eur Radiol; 2024 Oct; 34(10):6254-6263. PubMed ID: 38634876 [TBL] [Abstract][Full Text] [Related]
11. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Ding J; Xing Z; Jiang Z; Chen J; Pan L; Qiu J; Xing W Eur J Radiol; 2018 Jun; 103():51-56. PubMed ID: 29803385 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of Clear Cell Renal Cell Carcinoma From Other Subtypes and Fat-Poor Angiomyolipoma by Use of Quantitative Enhancement Measurement During Three-Phase MDCT. Kim SH; Kim CS; Kim MJ; Cho JY; Cho SH AJR Am J Roentgenol; 2016 Jan; 206(1):W21-8. PubMed ID: 26700359 [TBL] [Abstract][Full Text] [Related]
13. A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma. Nie P; Yang G; Wang Z; Yan L; Miao W; Hao D; Wu J; Zhao Y; Gong A; Cui J; Jia Y; Niu H Eur Radiol; 2020 Feb; 30(2):1274-1284. PubMed ID: 31506816 [TBL] [Abstract][Full Text] [Related]
14. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Shu J; Tang Y; Cui J; Yang R; Meng X; Cai Z; Zhang J; Xu W; Wen D; Yin H Eur J Radiol; 2018 Dec; 109():8-12. PubMed ID: 30527316 [TBL] [Abstract][Full Text] [Related]
15. Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study. Goyal A; Razik A; Kandasamy D; Seth A; Das P; Ganeshan B; Sharma R Abdom Radiol (NY); 2019 Oct; 44(10):3336-3349. PubMed ID: 31300850 [TBL] [Abstract][Full Text] [Related]
16. Differentiation of benign from malignant solid renal lesions using CT-based radiomics and machine learning: comparison with radiologist interpretation. Wentland AL; Yamashita R; Kino A; Pandit P; Shen L; Brooke Jeffrey R; Rubin D; Kamaya A Abdom Radiol (NY); 2023 Feb; 48(2):642-648. PubMed ID: 36370180 [TBL] [Abstract][Full Text] [Related]
17. Clinical application of radiomics for the prediction of treatment outcome and survival in patients with renal cell carcinoma: a systematic review. Khene ZE; Tachibana I; Bertail T; Fleury R; Bhanvadia R; Kapur P; Rajaram S; Guo J; Christie A; Pedrosa I; Lotan Y; Margulis V World J Urol; 2024 Sep; 42(1):541. PubMed ID: 39325194 [TBL] [Abstract][Full Text] [Related]
18. Texture analysis as a radiomic marker for differentiating renal tumors. Yu H; Scalera J; Khalid M; Touret AS; Bloch N; Li B; Qureshi MM; Soto JA; Anderson SW Abdom Radiol (NY); 2017 Oct; 42(10):2470-2478. PubMed ID: 28421244 [TBL] [Abstract][Full Text] [Related]
19. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Kocak B; Ates E; Durmaz ES; Ulusan MB; Kilickesmez O Eur Radiol; 2019 Sep; 29(9):4765-4775. PubMed ID: 30747300 [TBL] [Abstract][Full Text] [Related]